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Part I

Microwave system for 85Rb and
87Rb hyperfine transitions
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Overview

The purpose of this system originally designed by Alan Robinson [1] is to
deliver, respectively for 85Rb and 87Rb, 3.0 GHz and 6.8 GHz signals (possi-
bly simultaneously) at a maximum power of 1 W from 75 MHz and 85 MHz
reference signals to promote electrons from the lower hyperfine state of the
5S1/2 level to the upper one (see fig. 1, data from [2]).
The first stage is to multiply these reference frequencies by 10 using a phase
locked loop (PLL) controlling the output frequency of a voltage controlled
oscillator (VCO). Then the VCO output is passed through frequency dou-
blers, band pass filters and amplifiers so that harmonics are damped. In the
end the microwaves are amplified up to almost 1 W, this output power is
controlled with what I will refer to as the ”setpoint” voltage. Furthermore
the final power of both signals are stabilized by another loop (”power loop”).
The principles and function of each stage and the problems I encountered
while constructing them will be explained in detail in the different sections
of this report.

Figure 1: 85Rb and 87Rb energy levels
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Chapter 1

Frequency multiplication and
stabilization

1.1 Phase locked loop

1.1.1 About the loop

The VCO is used to produce the ten times greater frequency signal. Its out-
put frequency, fV CO, is controlled via a DC signal. A PLL is used to lock this
frequency onto the reference, you can find the diagram of the loop in figure
1.1. For more details on PLLs including mathematical description see ref. [3].

Figure 1.1: PLL diagram

The reference signal (of frequency fref ) and the VCO phases are compared
with a UBC made phase/frequency discriminator based on a Analog Device
AD9901 chip. If the frequencies of the two signals are not close enough the
device will switch to frequency comparison. In both cases it will create a DC
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signal (”servo” signal) which is proportional to the phase difference between
the VCO output and the reference signal.
It is necessary to include a filter to cut the high frequencies. The main fea-
ture of this filter is two proportional integrative (PI) amplifiers. A voltage
rectifier is used to cut all negative voltages since the VCO only withstands
positive ones. For the filter schematics please refer to fig. 1.3, pictures of the
boards are shown fig. 1.2.

(a) Top (b) Bottom

Figure 1.2: Pictures of the PLL filter

Since we want the VCO to produce higher frequencies, its coupled output
frequency is divided by 2 N (N can be set on the PLL box front panel) so
that if the loop is locked fV CO = 2Nfref . N is set to 5 for both lines.
After the VCO, each signal goes through a certain number of frequency
doublers (see Chapter 2). Table 1.1 sums up the different frequency multi-
plications.

goal reference VCO output number of doublers
3.0 GHz 75 MHz 750 MHz 2
6.8 GHz 85 MHz 850 MHz 3

Table 1.1: Getting the wanted frequencies
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Figure 1.3: PLL filter schematic
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frequency servo gain R1 (Ω) τ (µs)
3.0 GHz 1.53 625 20± 1
6.8 GHz 1.53 498 17± 1

Table 1.2: PLL parameters values and stabilization time

1.1.2 PLL stability

If the loop is locked it also has to be stable. To ensure this I applied a 100 kHz
step to the frequency reference to see the loop response. To produce the ref-
erence signal I used an Agilent 8648A function generator and the frequency
was shifted by applying a square wave to the FM MOD input. This square
wave was produced by a Stanford Research System DS345 function genera-
tor. For the test of the 3.0 GHz VCO and servo, the reference was changed
from 75.0 MHz to 75.1 MHz resulting in a shift of the VCO frequency from
750 MHz to 751MHz. This means that the servo signal (proportional to the
phase difference of VCO and reference signals) will suddenly change and be-
cause of the loop inertia it will take some time before reaching the steady
state. One must adjust some loop parameters to avoid oscillations and to
minimize the stabilization time.

Two parameters are adjustable, they are the servo gain (which is a pro-
portional gain: increasing it means having a faster response but also risking
to make the loop unstable) and the R1 potentiometer (which controls the
ratio of proportional gain over integrative time constant for the first PI filter
within the PLL filter: favoring the integrative component over the propor-
tional one results in better stability but increased transient regime duration).
The loop responses for both lines are shown in figures 1.4 and 1.5, the time τ
it takes for the loop to stabilize and the chosen parameters values are given
in table 1.2

1.1.3 Oscillations in VCO input signal

The first time I tried to measure the stability of the PLL applying a 100 kHz
step to the reference frequency, I could see that the expected response curves
were there but a 11 MHz oscillation with large amplitude was added to it.
Note that the loop was still locked despite the oscillations, which means the
VCO does not respond to such frequencies.

I could see this effect on both PID controllers (PLL filters) so it was
probably not a board defect. After probing the entire board I found that
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Figure 1.4: Transient regime while applying a 100 kHz step to the reference
frequency - 3.0 GHz line

Figure 1.5: Transient regime while applying a 100 kHz step to the reference
frequency - 6.8 GHz line

when I touched the V− input of the inverter op-amp the oscillations were
removed. It was because the probe filtered away this frequency component.
I did not want to add a new filter to the PID controller since it would have
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change the behavior of the PLL. After some investigation I found that the
op-amps used for the RbSS I worked on were not the same as in the first
RbSS system. I used some OP37G and the first RbSS used LF356 op-amps,
so I replaced them all. This simple change removed completely the oscilla-
tions. It appeared that the LF356 has a 5 MHz gain-bandwidth product and
the OP37G has one of 50 MHz. Using the LF356 which has a lower gain-
bandwidth product produced a servo signal without the 11 MHz oscillations.

1.1.4 Frequency stability of different reference signals

The RbSS reference oscillation will be produced by DDSs (Direct Digital
Synthesizers) but for my tests during the set up of the system I used the
Agilent 8648. When I tried to use a DDS as reference I saw ”dirty” transient
curves (servo and VCO input) when applying a frequency step to the DDS
(see figures 1.6 and 1.7 and compare with figures 1.4 and 1.5)

Figure 1.6: Transient regime while applying a 100kHz step to the reference
frequency from a DDS - 3.0 GHz line

The DDS set at 75 MHz or at 85 MHz is actually locked onto a first DDS
set at 15 MHz locked itself onto the master clock. Thus I took some spectra
of the three sources: the Agilent, the DDS set at 75 MHz and the output of
the first DDS at 15 MHz. The spectra are shown in figure 1.8 with a zoom
into a narrower range around 75 MHz in figure 1.9. On both graphs the DDS
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Figure 1.7: Transient regime while applying a 100kHz step to the reference
frequency from a DDS - 6.8 GHz line

at 15 MHz is centered at 75 MHz for an easier comparison with the other
two curves.

Figure 1.8: Reference signals spectra
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Figure 1.9: Close-up

There is an evident difference in linewidth, the Agilent has obviously a
better frequency stability. Wings to the central DDS at 75MHz peak are
about ten times larger than the Agilent peak. This is most certainly an ef-
fect of the PLLs used in the DDSs to multiply the frequency of a source.
Since the DDS at 75 MHz is locked on to the DDS at 15 MHz, it means two
PLLs are needed to produce the desired signal. If each PLL has phase noise
it is natural that the output has frequency noise which is amplified if several
PLLs are used.

Though these wings are at quite low power relative to the peak power,
it has effect on the 750 MHz spectra taken at the VCO coupled output as
shown in figure 1.10. Increasing zooms are shown in fig. 1.11 and 1.12. Of
course when using the 15 MHz DDS as the reference for the RbSS, N has to
be set to 25.
It may not be a problem of great importance but this is yet to be confirmed
using this second RbSS in the experiment.
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Figure 1.10: VCO output spectra for the three sources

Figure 1.11: Zoom 1
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Figure 1.12: Zoom 2

1.2 Reaching 3.0 GHz and 6.8 GHz

As said in the overview, before amplifying the signals it is necessary to have
the wanted frequencies with harmonics from the VCO output damped to the
maximum. That is why after each frequency doubling, the signals are band-
pass filtered then amplified to maintain a certain power level. In figures 1.13
and 1.14 you can see a block diagram (of the first box) showing the frequency
multiplication stage and the power loop filter for both frequencies.
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Figure 1.13: Block diagram of the first box : frequency multiplication and
power loop filter
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Figure 1.14: Block diagram of the first box : frequency multiplication and
power loop filter
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Chapter 2

Power amplification and
stabilization

2.1 Power amplification

The output from the first box is sent to a second box (”power box”) which
contains the last amplifiers to reach approximately 1 W. The block diagram
is shown fig. 2.1. Each line has one or two amplifiers, the amplified signal
go through a 20 dB coupler, most of the power goes to the reed (mechan-
ical) switch and then to the output. The 20 dB coupled output is for the
power detector which can not bear power higher than 20 dBm. There are
also isolators so that, when the reed switches are opened, the power is dissi-
pated in them and does not come back through the previous RF components.

2.2 Power loop

As said previously, the output power of the RbSS system is also stabilized
with a loop. We set the desired power with the ”setpoint” DC voltage from
an analog output controlled via a python program. The setpoint is compared
with the DC voltage coming from the power detector. This difference signal
is produced on the power loop filter which is in the first box as seen in
figures 1.13 and 1.14. This signal, after passing through filters, is sent to
a VCA (voltage controlled attenuator) which is also in the first box. The
VCA has a logarithmic relation between its DC input and how it attenuates
the RF signal, so there is also an exponential amplifier on the power loop
PID controller to make the relation between the setpoint and the actual
attenuation as linear as possible. Please note that the setpoint voltage is
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Figure 2.1: Block diagram of the second box : power amplification and
stabilization

also sent to a MOSFET controlling a PiN diode (see figs. 1.13 and 1.14),
thus the diode is used as an early switch which is open for 0 setpoint. The
power loop filter schematic is shown fig. 2.3, pictures in fig. 2.2. The INA 154
amplifier outputs the difference between the setpoint voltage and the power
detector output. As the diode is not completely on before a 4 V setpoint,
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the larger setpoint range has to be from 4 V to 10 V. The power detector
approximately outputs from 0.6 V to 2 V, it is thus necessary to multiply
the power detector output so that we can use the wider range of setpoint
possible. There is a INA 128 amplifier which gain is tunable and given by
G = 1 + 50 kΩ

R42+R43
with R43 = 3.83 kΩ, with notation consistent with the

schematic fig. 2.3. This filter has adjustable parameters controlled by three
potentiometers. Optimal values as well as the INA 128 gain can be found in
table 2.1. R1 controls the integrative time constant and proportional gain
for the PI filter and R4 acts only on its proportional gain. R42 controls the
gain of the INA 128 amplifier.

frequency R42 R4 R1 calculated INA 128 gain
3.0 GHz 3.48kΩ 2.84kΩ 16.7kΩ 7.83
6.8 GHz 4.79kΩ 2.79kΩ 16.5kΩ 6.80

Table 2.1: PLL parameters values

(a) Top (b) Bottom

Figure 2.2: Pictures of the power loop filter
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Figure 2.3: Power loop filter
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Chapter 3

System behavior

3.1 Temperature sensitivity of RF components

When I tried to measure the output power versus setpoint I realized that the
maximum power varied with time. It appeared that is was also the case for
lower powers and that the most probable reason to this effect was that at
least one component (amplifier, power detector...) was temperature sensitive.
This is a rather small effect so it certainly won’t be a problem for microwave
transitions since the maximum power fluctuations are about 0.5 dBm. The
power variation time was difficult to evaluate. To have a rough idea about it,
I measured the output power two different ways with a spectrum analyzer.
One way (”fast” way) was to let the signal out for a time no longer that what
it takes for the spectrum analyzer to average (over 30 spectra), that is about
15 s, then shut down with 0 setpoint and wait about 30 s to let the system
cool down and then repeat the procedure over a large power range. The
second way (”slow” way) was to set the power and then wait 30 mn before
taking the data point. The results are shown fig 3.1 and as you can see, the
difference is far from huge on this particular measurement. The only thing
I can conclude is that the power varies over minutes (or dozens of seconds),
but I don’t have precise variation times.

I attempted to know which component(s) was (were) temperature sensi-
tive, blowing hot air with the heat gun on different spots. I saw a drop of
power for the 3.0 GHz line but nothing for the 6.8 GHz. The reason why this
test was inconclusive was that I could not be sure which component I hit with
the heat gun since the area covered was too large. The power drop could be
a result of melting solder of some electronics leading to a malfunction of the
amplification. I stopped the test by fear of damaging a component as some
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Figure 3.1: Power variation with time because of temperature

wires started to melt.

3.2 RbSS switch on time

How fast is the system to completely turn on (that is delivering a stable 1 W
microwave signal) was of the greatest importance. Benjamin Deh reported
that the first system was unable to function below ≈ 5.5 ms after turning
on. So I measured different switching on times: how fast is the system to be
stable with the reed switch closed and how fast is actually this mechanical
switch to close.

For the first one I just took the PLL phase monitor signal while going
from 0 setpoint to max power setpoint for both 3.0 GHz and 6.8 GHz. The
results are shown fig. 3.2 and 3.3. The difference between those one and the
PLL transient curves from the PLL stability study is that here we consider
the whole system and not only the PLL. Now there is some coupling be-
tween frequency multiplication and power stabilization resulting in a longer
stabilization time.

To measure the closing time of the reed switches I needed to take the 3.0
GHz and 6.8 GHz output signals. I tried to use a Tektronix 11801B oscillo-
scope which can go up to 50 GHz but I could not figure out how to trigger it,
which is somehow frustrating since it is a digital oscilloscope. So I ended us-
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Figure 3.2: Stabilization of 3.0GHz signal - (85± 1)µs

Figure 3.3: Stabilization of 6.8GHz signal - (79± 1)µs

ing a Tektronix TDS 3014 and even though it can’t trace these frequencies I
could see something. You can see the time it takes for the mechanical switch
to close in figures 3.4 and 3.5, note the bouncing. The times I measured are
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consistent with the observation of B. Deh.

Figure 3.4: 3.0GHz - Reed switch closing time : (6.7± 0.1)ms

Figure 3.5: 6.8 GHz - Reed switch closing time : (7.0± 0.1)ms

Using the same method I measured again how long it takes for the system
to stabilized while applying a setpoint step. I found similar times to those I
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found monitoring the servo signal as shown in figures 3.6 and 3.7.

Figure 3.6: Stabilization of 3.0GHz signal - (73± 2)µs

Figure 3.7: Stabilization of 6.8GHz signal - (74± 2)µs
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These results will be helpful to write a good code sequence and thus be
able to use the system for time inferior to the millisecond.

3.3 Output power as a function of setpoint

voltage

To measure the output power I used a spectrum analyzer with an average
over 40 spectrum. I let the microwaves out for 10 s for each data point with
a waiting time superior to 10 s between two measurements to avoid temper-
ature effects. The curves with fits are shown figures 3.8 and 3.9.

Figure 3.8: Output power versus setpoint - 3.0 GHz
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Figure 3.9: Output power versus setpoint - 6.8 GHz
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Chapter 4

Helical antennae

Currently, the antennae used are λ/2 dipole antennae. They are simple and
efficient antennae but they have low directivity: they emit in a quite big solid
angle even with the help of reflectors. A more directive antenna and not so
complicated to make is the helical antenna. It is characterized by three pa-
rameters, its diameter D (or identically, its circumference C), the helix pitch
angle α and the number of turns N (see fig 4.1). Another quantity has to be
introduce which is the spacing between two turns S. Length quantities ex-
pressed in units of the radiation wavelength in the antenna have a λ subscript.

Figure 4.1: Helix geometry

We want the helix to radiate mainly in the direction of its axis (not
radially), using ref. [4] we know that to achieve such axial mode, Cλ, α and
N must lie within certain ranges which are :

3/4 < Cλ < 4/3

12 < α < 14
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N > 3

Cλ = 1.20, α = 13.0 and N = 8 were used, resulting in Sλ = 0.277. Ac-
cording to the Kraus’ antenna gain formula G = 11.8+10 log (NC2

λSλ), these
parameters are quite optimal: they allow high gain and axial mode radiation.
Trying to get a higher gain involves having Cλ and α too close to their maxi-
mum value risking a bad far field radiation pattern. Increasing N will result
in a higher gain and a higher directivity but also in a longer helix which is a
great issue, so N = 8 is a good compromise.

The antenna length has been indeed a severe strain. The 3.0 GHz antenna
(just a helical wire) length is NSλλ0 = 22.2 cm (λ0 being the wavelength in
vacuum) which is too long. Antennae should not be longer than 10 cm to fit
on the table. The solution is to wind the wire around a dielectric material
cylinder with high enough dielectric constant εr to make the wavelength in
the antenna smaller. The length is then given by NSλλ0/

√
εr.

Several machinable materials can be used, the best found was Delrin
(polymer) or Mykroy/Mycalex (glass bonded mica). Materials, dielectric
constant used for calculation and corresponding helix characteristics for both
frequencies are shown table 4.1. For most case the exact εr for 3.0 GHz or
6.8 GHz was not available, that is why assumptions are made. For higher
frequencies, the dielectric constant is expected to drop but in a way which
greatly depend on the material used.

Material f (GHz) εr λ (mm) L (mm) D (mm) S (mm)

PMMA
3.0 2.475 @6.8GHz 63.56 140.88 24.28 17.61
6.8 2.475 @6.8GHz 28.04 62.15 10.71 7.77

Macor
3.0 5.67 @6.8GHz 42.00 93.08 16.04 11.64
6.8 5.67 @6.8GHz 18.53 41.06 7.08 5.13

Mykroy/Mycalex
3.0 6.79 @3.0GHz 38.38 85.06 14.66 10.63
6.8 6.79 @6.8GHz 16.93 37.52 6.47 4.69

Delrin
3.0 3.7 @1MHz 51.99 115.22 19.86 14.40
6.8 3.7 @1MHz 22.94 50.83 8.76 6.35
6.8 3.5 assump. 23.58 52.27 9.01 6.53

Table 4.1: Dielectric constants and helix characteristics

Another issue is impedance matching. It can be achieved by partly flat-
tening the first 1/4 wire turn of the helix, that is why there is some spacing
between the ground plane and the dielectric core. An external tubing has
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been made to cover the wired helix. You can see the antenna model in fig.
4.2.

Figure 4.2: Helical antenna designed with Solidworks

A prototype 6.8 GHz antenna was machined using Delrin and assuming
εr = 3.5. Unfortunately the copper base used as a ground plane and a re-
flector could not have been made on time. A ”hand made” squared ground
plane with approximately the same dimension was made to replace the miss-
ing one. A 0.81 mm diameter copper wire was winded around the Delrin
core. This diameter is not a critical parameter since it has to lie between
0.005λ and 0.05λ [4]. A picture of the antenna is shown fig 4.3. Testing this
prototype revealed that it was less good than the current 6.8 GHz antenna:
for an identical distance to the measurement coil the power was lesser (read
with the spectrum analyzer) by several dBm. The reason may be that the
dielectric constant assumed was wrong for Delrin at this frequency. A quick
directivity test showed that it had side lobes meaning that the antenna was
not functioning in pure radial mode. It may also be that the poor manufac-
ture of the ground plane and the lack of precise impedance matching caused
a bad field pattern.
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Figure 4.3: Prototype helical antenna
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Feshbach resonances
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Chapter 5

A glimpse at quantum collision
theory

5.1 Elastic collisions

Elastic collisions are of great importance since they thermalize the atomic
cloud. Here is a quick proof of the ”harmless” effects of such collisions, for
more details you can refer to [5], [6], [7]. There is a wide choice in literature
for quantum elastic collisions.

5.1.1 Asymptotic scattering wave function

For a two-body collision we can study separately the motion of the center of
mass and the relative motion of the two particles. The motion of the center
of mass is one of a free particle so the relative motion of the particles will be
studied here and considered as a virtual particle (observed in the center-of-
mass frame) of mass µ which is the reduced mass of the colliding particles:
µ = m1m2/(m1 +m2).
Let’s assume that the potential V felt by the fictitious particle only de-
pends on r, the relative position of the two particles. The time independent
Schrdinger equation to solve is then(

p2

2µ
+ V (r)

)
Ψ(r) = EΨ(r) (5.1)

We can consider the following asymptotic solution:

Ψ(r) ≈
r→∞

eikz + f(θ, φ)
eikr

r
(5.2)
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It is a superposition of an incoming plane wave (before scattering) and an
outgoing spherical wave (after scattering) valid far away the potential ef-
fective area. The outgoing wave has a f(θ, φ) factor called the scattering
amplitude which depends on V (r). Since the problem has a spherical sym-
metry f does not depends on φ: f(θ, φ) = f(θ).
The collision differential cross section σ(θ, φ) measure the probability to ob-
serve a scattered particle in a unit solid angle in the direction given by (θ, φ),
it is thus the ratio of the scattered over incoming current density. For an
elastic scattering by a central potential this reduce to:

σ(θ, φ) = σ(θ) = |f(θ)|2 (5.3)

The total cross section σT is simply the sum of σ(θ) over all solid angles.

5.1.2 Partial wave analysis

We can switch to a partial wave basis and look for solutions to 5.1 in the
form (spherical symmetry is again used to simplify):

Ψ(r) =
∞∑
l=0

ClRl(r)Pl(cos(θ)) (5.4)

where Pl are Legendre polynomials, Rl are radial functions and Cl some
constants defined by normalization. Let be ul(r) = Rl(r)/r, ul functions are
solutions of (

∆ + k2 − l(l + 1)

r2
− U(r)

)
ul(r) = 0 (5.5)

where U(r) = h̄2

2µ
V (r). From there we can find the expression of ul(r) far

from the effective range of the potential:

ul(r) ≈
r→∞

sin
(
kr − lπ

2
+ δl

)
(5.6)

And then we can rewrite f in this new basis:

f(θ) =
∞∑
l=0

(2l + 1)eiδlsin(δl)Pl(cos(θ)) (5.7)

5.1.3 Cold elastic collisions

Classically, the angular momentum of a particle approaching on a straight
line a fixed target is L = mvb where m is the particle mass, v its speed and

34



b the impact parameter which is approximately the effective distance for a
central potential. Let’s assume the particle moves slowly towards the target
(low collisional energy), as a result L will be relatively small.
In a quantum description, if mvb/h̄ = kb � 1 that is b � λdB where λdB is
the de Broglie wavelength then we have L/h̄� 1 that is l ≈ 0. It means the
particle does not have enough energy to pass the centrifugal barrier added to
U(r) since k2 � l(l+ 1)/b2. We can conclude that, for a cold (low energetic)
collision, one can only consider the l = 0 term in 5.4 and 5.7. These kind of
collisions are called s-wave collisions in relation to the spectroscopic notation
for l = 0.
Let’s have a look to what this approximation gives for important collision
parameter such as f :

f(θ) =
sin(δ0)

k
eiδ0 (5.8)

Using 5.3, the scattering cross section becomes:

σT =

∫
|sin(δ0)

k
eiδ0|2 dΩ = 4π

sin2(δ0)

k2
(5.9)

Until now, the two colliding particles has been considered as distinguish-
able. Including the indistinguishable nature of a identical particles collision,
it brings modifications to the expressions of wave functions, scattering am-
plitudes and cross sections. For bosons, the total wave function Ψ(r) has
to be symmetric in r, for fermions it has to be anti-symmetric. Thus for a
elastic collision between two bosons:

σ(θ) = |f(θ) + f(π − θ)|2

and for a collision between two fermions:

σ(θ) = |f(θ)− f(π − θ)|2

Considering s-wave collisions for 85Rb or 87Rb, which are bosons, σT becomes:

σT = 8π
sin2(δ0)

k2

We can introduce a new quantity for s-wave collisions which is the scattering
amplitude a given by:

a ≈
k≈0
−δ0

k

It is possible to link it to the total scattering cross section:

σT = 8πa2
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The scattering amplitude is an interesting quantity, it is a measure of the
potential effective range without making any assumption on the shape of the
potential itself. Two completely different V (r) with the same a will results
in identical s-wave scattering properties. Furthermore its sign is relative to
the type of interactions between atoms, if a < 0 they are attractive and if
a > 0 they are repulsive.

5.1.4 Conclusion

According to 5.6 the effect of a elastic scattering is just a phase shift be-
tween each incoming and outgoing partial wave since sin(kr − lπ

2
+ δl) =

1
2i

(ei(kr−l
π
2

+δl)− e−i(kr−lπ2 +δl)), there is no change in amplitude. There are not
any changes of any internal degree of freedom either (such as the spin for
instance). Elastic collisions are ”good” collisions in a sense that they only
thermalize the atomic cloud and are not the cause of losses.

5.2 Inelastic collisions

These kind of collisions will result in an energy transfer from internal degrees
of freedom towards kinetic energy resulting in losses and heating [7], [8]. Such
scattering events can involve two or three particles. Some aspects of these
”bad” collisions are presented below.

5.2.1 Spin exchange collisions

If two atoms in a different hyperfine level collide they can experience a change
in their hyperfine state while conserving the total angular momentum and
its projection along the z-axis. For instance two atoms in a (F = 2,mF = 1)
interacting can leave in a (F = 2,mF = 0) and a (F = 2,mF = 2) set but
for two atoms initially in a (F = 2,mF = −2) state this interaction is not
happening since a (F = 2,mF = −3) state does not exist. In a magnetic
trap, such a hyperfine change can lead the atom to be in an untrappable
state, therefore leading to losses. Furthermore, because of the presence of
a magnetic field, the Zeeman splitting can cause one atom to gain kinetic
energy. If this atom is in a dipole trap and if the energy gained is greater
than the trap depth, the atom will leave the trap.
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5.2.2 Magnetic dipole relaxation

This happens when the magnetic dipoles of the colliding atoms interact
(atoms have a magnetic dipole created by the nucleus and the electron spin).
Because of the nature of this interaction two s-waves colliding may leave in
a d-wave channel [8]. As a consequence of the change in orbital momentum,
there will be a change in hyperfine sates to keep the projection along the
z-axis of the total momentum F constant.

5.2.3 Three bodies molecular recombination

Molecule creation as a three-body process: two atoms bond together and the
third one receive the binding energy thus resulting in heating or loss depend-
ing of the trap depth. This energy gain can be lowered if the collision energy
is close to the binding energy, this is the case when a Feshbach resonance
happens. These effect will be discuss in the next chapter.
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Chapter 6

Feshbach resonances

6.1 Introducing Feshbach resonances

A Feshbach resonance happen when the collision energy is tuned into degen-
eracy with a bond state energy. This means that, with the help of an external
field, one can dramatically increase the interactions between atoms or, iden-
tically, increase the rates of elastic and inelastic collisions [10]. It means that
near a resonance, |a| will significantly increase. Using a magnetic field to
approach a Feshbach resonance, a has the form

a = a0

(
1− ∆

B −B0

)
where a0 is the off-resonance scattering length B0 is the field value at a reso-
nance and ∆ the resonance width. When B is swept though the resonance, a
varies from highly negative to highly positive values changing the nature of
the interaction from attractive to positive which is, for instance, an interest-
ing feature for the study of BEC. 85Rb and 87Rb have Feshbach resonance.
The resonance at B = 155G for 85Rb in the (F = 2,mF =)2 channel has
been studied by many groups because it is a very pronounced resonance and
its width is very large (≈ 5G). This is the resonance which will be studied
here too.
The QDG group is very interested in using Feshbach resonances to study
collision between Rb and Li and create heteronuclear molecules from these
atoms and study their interactions.
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6.2 Trap life time applying an homogeneous

magnetic field

85Rb was loaded in a MOT and then transfered in the IPG dipole trap, some
MOT coils were used to create a homogeneous magnetic field (Helmholtz
configuration). This field was swept in amplitude from 0 A to 12 A current
in the coils and for each current the trap hold time was varied from 100 ms
to 2 s (200 ms has to be added). Benjamin Deh’s magnetic field calibration
gives the magnetic field B as a function of the current I:

B = 31.8I

Thus 155 G Feshbach resonance happens for a current I ≈ 5A. For this
first measurement, 1 A steps were used between two data points so it was
impossible to see the 5G wide Feshbach resonance. Typical trap losses with
increased trap hold time are shown fig. 6.1. Losses happens because of
inelastic collisions and background atoms collisions.

Figure 6.1: Atom losses while increasing trap hold time - I = 2 A

Each data curve was fitted by f1e−t/f2 + f3e−t/f4, fig. 6.2 show the
time constants versus magnetic field and fig. 6.3 show the fit exponentials
amplitudes versus magnetic field. One decaying exponential was not enough
to fit because of multiple sources of inelastic collisions.

One can see that the trap life time was decreasing when the magnetic
field was increased. This means that either the field is not perfectly homo-
geneous so that Zeeman splitting at high field causes losses from inelastic
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Figure 6.2: Trap life time

Figure 6.3: Fit amplitudes

collisions or the magnetic field is not homogeneous for some currents: it has
been reported that oscillations in the coils driver could happen for some cur-
rent values. The main information obtained from this measurement is that
even when losses are maximum, trap life times are never below 2 s. So we
can use the system to search for Feshbach resonances.
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Comparing the dipole trap depth and the maximum energy gain because
of a Zeeman state changing inelastic collision has been possible thanks to
a James Booth python program modified by Bruce Klappauf. This code
calculates eigenvalues (and eigenvectors) of the sum of the hyperfine structure
and the hyperfine Zeeman hamiltonians. Using the code for 85Rb it gives the
curves shown in fig. 6.4. They are very similar to these from ref [2].

Figure 6.4: Eigenenergies versus magnetic field

If two atoms collide and leave in a different Zeeman sub-state the energy
available in the center-of-mass frame from this internal state change will be :

Ecm = (Eatom1 + Eatom2)before collision − (Eatom1 + Eatom2)after collision

The energy Ecm will be transfered to kinetic energy and if it is greater than
the trap depth the atom will very likely be lost. The energy lost −Ecm as
a function of magnetic field is shown fig. 6.5. According to Will Gunton’s
data, the depth is about 813µK ≈ 16.9 MHz so trap losses will happen from
a field of about 190 G.

This alone does not explain the drop of life time for small magnetic fields
(< 200 G).

41



Figure 6.5: Energy lost in the collision because of Zeeman sub-state changing

6.3 Searching for Feshbach resonances

After measuring the trap life time, Feshbach resonances were searched even
if the atoms are not all in the (F = 2,m− =F= −2) state. The first try was
with one second hold time in the dipole trap (see fig. 6.6).

Figure 6.6: A Feshbach resonance ?

This drop may be a sign of a Feshbach resonance, the magnetic field is
close to 155 G trusting the calibration of B. Deh. This and the width are
consistent, so another run was made within a smaller current range, see fig.
6.7
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Figure 6.7: Disappearance of the ”resonance”

As you can see the ”resonance” seemed to have disappeared. This may
be due to the mixing of Zeeman sub-states, other measurements were made
after fixing this. For the new ones, the changing parameter is not the trap
hold time but the time of exposure to the magnetic field. Results for different
magnetic hold times are presented figures 6.8, 6.10 and 6.11.

Figure 6.8: A Feshbach resonance ? - 1 s magnetic hold time

The resonance and its width seems to vary for each run, both variation
would be explained by a variation of the magnetic field. Further investigation
may include a verification of the coil driver, trying shorter magnetic hold
times to see if the drop stop ”saturating” to ≈ 40000 atoms and verify if the
MOT is really recapturing when the ”resonances” happen.
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Figure 6.9: A Feshbach resonance ? - 1 s magnetic hold time - smaller range

Figure 6.10: A Feshbach resonance ? - 500 ms magnetic hold time

44



Figure 6.11: A Feshbach resonance ? - 250 ms magnetic hold time
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