
ZOINKS and Z.759 - The Unfinished
Computer Experimental Control System

Raymond Meng Gao
Quantum Degenerate Gas Laboratory

Prof. Kirk W. Madison
Chem/Phys A015/023 UBC

Last Modified Date: August 31, 2005

Contents

1 About This Report 1

2 A Brief History of ZOINKS 3

3 The Texas Box 6
3.1 50-Pin Bus Interface 6
3.2 Analog Out . 8
3.3 Digital Out . 8
3.4 UT Bus Drivers: Past and Future 8

3.4.1 The Ni635X card 8
3.4.2 The Fast Bus Driver 10

4 DDS 11
4.1 Programming the DDS 11
4.2 Debugging . 13

4.2.1 The Delay Line 14
4.2.2 The Load Data Pin 14
4.2.3 The Update Pin 15

4.3 RF Amplifiers . 16
4.4 The new DDS boards 16

5 The Control Software 19
5.1 UT Control . 19

6 Z.759 21
6.1 Architecture . 21

6.1.1 XML . 24
6.1.2 the Master Tables 25
6.1.3 the Device Drivers 26

6.2 Problems . 27
6.2.1 State Dependence 27
6.2.2 GoBackInTime? 28

1

6.2.3 L2 Drivers . 29
6.2.4 Implementing Non-UT bus devices 30

6.3 Demo Utility . 30

7 QDG and ZOINKS: The Big Picture 32

A List of References 33

2

Chapter 1

About This Report

This document tries to glue together the bits and pieces of the Com-
puter Control Project that I have been assigned to during my 8 month
co-op workterm here at the QDG lab. At this point, there are so many
components of the project unfinished, untested, and undocumented, it
is almost impossible to make this paper perfectly coherent. This is my
fair warning to the reader.

[What is ZOINKS?]

Zee Open Interface Networked Kontrol Standard was pro-
posed by Dr.Kirk Madison and Dr.Dan Steck as a series of open source,
reusable, and scalable experimental control/data acquisition systems
for the Atom Optics research community around the world.

[Does it have a webpagge?]

Yes. Although this might be a temporary location.
http://atomoptics.uoregon.edu/zoinks/

[What is Z.759?]

Z.759 is the name dubbed for the software suite being developed to
control ZOINKS devices. Since I am leaving this project incomplete
at the end of my workterm, I decided to name it after Schubert’s
Unfinished Symphony #8 D.759.

[Doesn’t naming the project after Schubert’s famous composition make

you sound pretentious and arrogant?]

No, I find it to be in good humour.

1

Disambiguation of Terminology:

There are 2 words that are widely abused in this document: Bus
and Driver. I will try to clarify them here.

In this document, whenever I refer to UT Bus Driver, I am refer-
ring to a piece of hardware that can write bit patterns onto the 50-pin
UT bus, either NiDAQ card or the Fast Bus Driver.

Whenever I refer to UT Device Drivers, I am referring to the
set of hardware can communicate on the UT bus, ie: the Analog Out,
Digital Out, or the DDS.

When I refer to UT Bus Devices, I am referring to any device
that can be driven by the UT Device Drivers.

Also a hardware driver is different from a software driver.

Acknowledgements:

My best regards to everyone in the QDG lab during my workterm: Paul,
Swati, Tao, Peter, Aviv, Janelle.

Special thanks to Dr Kirk Madison and Dr Bruce Klappauf who not only
offered me this great job but helped me time and time again with all
my projects.

More thanks to all people in the UBC Electronic Shop Richard, Tom,
Gar, Marcel, and Stan.

And Dr. Daniel Steck’s group in Eugene, as well as Dr. Todd Meyrath
and Dr. Florian Schrek in Austin who designed and built the UT Bus
system and the original \textbf{Control.}

All the note icons are Microsoft ClipArt

2

Chapter 2

A Brief History of ZOINKS

If you believe that the universe began 13 billion years ago, earth formed
5 billion years ago, the dinosaurs became extinct 65 million years ago,
the great pyramids built 2500 years ago, then on the same scale, project
ZOINKS started about 2 years ago.

Taking the idea of connecting all devices to LAN, project ZOINKS
revolved around a multipurpose, open source, microcontroller board,
the Ethernut. An overwhelming number of ZOINKS devices were then
proposed and currently being developed in a collaborate effort by Kirk
Madison’s group at UBC, Dan Steck’s group at U of Oregon, and Mark
Raizen’s group at U of Texas, Austin.

Below is a list of some important projects and their status as of now.
Not all of these are Ethernut devices, and the development of some of
these predate ZOINKS.

Legend:

The project is in need of a lot of work (>6 months)

The project is in need of some work (<6 months)

The project is complete.

3

Ethernut Projects

Ethernut-GPIB - Allows GPIB instruments to
be controlled from LAN.

Ethernut-Serial - Allows serial instruments to
be controlled from LAN.

Web Thermal Couple - Take temperature read-
ings on the web.

Ethernut Analog Input Board - Based on the
web thermocouple design.

Fast Bus Driver - The replacement for the
NiDAQ cards

Rubidium Clock Controller - Twiddle with
the clock from LAN.

4

UT I/O Projects

DDS for QDG - the version that the UBC E-
Shop is building

DDS Version 2.0 - the version that Todd
Meyrath built.

RF Amplifier - Amplifier for the DDS.

Digital Out boards - digital

Analog Out boards - analog

New Control Software - for the UT Bus devices

5

Chapter 3

The Texas Box

This anonymous box, built by Todd Meyrath and Florian Schreck at
the University of Texas, Austin, contains arrays of digital and analog
line drivers for general purpose experimental controls. All these devices
in the box complies with a simple standard, the 50-pin parallel UT bus.
The line drivers come in 3 flavours, the analog outputs, digital outputs
and the DDS (Direct Digital Synthesizer). It was originally designed
to be driven by the National Instruments DAQ cards for PCI, but
adapted as a ZOINKS project and eventually will be driven by the
Ethernut [Figure 3.1] All references to the UT Box, UT bus, and the
UT devices are available on the UT control system’s homepage. (Refer
to Appendix) The following sections will make brief introductions to
the UT 50-Pin Bus, and the Analog/Digital Out boards. The DDS
will be discussed in the next chapter.

3.1 50-Pin Bus Interface

All devices on the bus must comply with the bus requirements, 16 data
lines, 8 address lines and 1 strobe line. The data and address lines are
synchronized to the strobe signal. That is, on every pulse of the strobe,
data and address will be loaded onto the bus. Only the device whose
address matches the address on the bus will latch the data from the
data lines.

To represent the address on a UT bus device, a dip switch and
a comparator is setup on board so that if and only if the address
pattern from the bus matches the dip switch pattern, will the
comparator produce a signal to allow data to be latched. [Figure 3.2]
(Refer to UT bus manual for more details)

6

Figure 3.1: UT Box for ZOINKS

Figure 3.2: UT Bus Block Diagram from the UT Bus Manual

7

3.2 Analog Out

The analog out board uses two 16 bit Quad DAC (DAC7744) digital
to analog converter chips to convert a 16-bit integer from the UT bus
into 8 multiplexed analog outputs.

The upper 5 bits of address bus must match the value on the 5
onboard dip switches, and the lower 3 bits refer to which of the 8 DAC
channels to drive. The DAC7744 is capable of 16 bit resolution with
+/-1bit LSB (least significant bit) error. The board is designed to
drive maximum of 50 ohm loads at max current of 250mA. (Refer to
Analog Out board manual for more details)

3.3 Digital Out

The digital out board simply consists of 16 BNC outputs that latches
and buffers the 16-bits of data coming from the data bus. Each line is
capable of driving 50 ohm loads. (Refer to Digital Out board manual
for more details)

3.4 UT Bus Drivers: Past and Future

This section will describe the two bus drivers, the Ni653X card and
the new Fast Bus Driver.

3.4.1 The Ni635X card

Up to now, the only UT Bus Driver we have used is the Ni653X card.
National Instruments supplies a variety of expensive digital and ana-
log output cards known for their high sampling rate. The NI6534
card features 32 general purpose DIO (TTL/CMOS) lines capable of
outputting at a maximum of 20MS/s. One of its main features not
available in its sister model the 6533 is its onboard 32Mb memory
bank. This onboard memory allows the card to perform processor in-
dependent operations such as storing an entire waveform in its internal
memory and looping it. These cards currently only have drivers for
Windows.

Our goal is to build a new bus driver with more memory, operating
system independent, and possibly faster, ie: the Fast Bus Driver.

8

Figure 3.3: The Fast Bus Driver

9

3.4.2 The Fast Bus Driver

The Fast Bus Driver [Figure 3.3] was proposed by Dan Steck in
collaboration with Kirk Madison and Bruce Klappauf. The ingenuity
behind the Fast Bus Driver is in the design of the timing system. It
uses one block of memory to store instructions and another block to
store a 32-bit time constant associated with that instruction. A sys-
tem counter will count endlessly from 1 to 232-1. The value of the
counter will be compared to the value of the time constant and when
they match, the associated instruction will be sent onto the bus. The
advantage of this is that it allows events separated by different orders
of magnitude in time units to be controlled in the same system with
exactly the same precision. A simple calculation can show that us-
ing 100 megabytes of RAM for the timing chip and an atomic clock,
one could retain nanosecond precision controlled events for as long as
3 years!. The FBD will be controlled through the Ethernut and has
wandered onto ZOINKS’ massive projects list.

The Fast Bus Driver is currently being developed by the UBC
Electronic Shop. Unfortunately, it will most likely be 6 months to a
year before the first model is built, tested, and programmed.

10

Chapter 4

DDS

The DDS board, designed by Todd Meyrath, is based on the AD9852
chip from Analog Devices. It is capable of generating sin waves from
DC - 150Mhz, with programmable frequency,amplitude,and phase con-
trol. It also has built in operational modes for common experimental
procedures such as frequency ramps, shape keying, and chirping. In
Todd’s design, the outputs pass through 135MHz low-pass ecliptic fil-
ters. The filter eliminates unwanted high frequencies above 135MHz.

There is an old board, version 1.0 which I will describe in more
detail here, and TWO new boards, one being built by the UBC elec-
tronic shop and the other already built by Todd Meyrath’s group at
UT. Both are based on the testing and debug feedback done here in
Kirk Madison’s lab. Thus the future for the DDS at QDG is not certain
at this point.

4.1 Programming the DDS

References: AD9852 Manual, Meyrath’s DDS Manual

The programming information provided here refers to the old DDS
board.

Since the DDS is built for the UT bus, programming it requires
writing 25-bit instructions to the bus. I used the NI-DAQ card to
drive the DDS so the easiest method was to use ”Pattern I/O” mode
(See the NI-653X DAQ manual) to write 32-bit data patterns onto the
UT bus [Figure 4.1].

11

Figure 4.1: DDS Parallel Programming

Sample programs written using the NI-DAQ card
to test the DDS are explained in the Software sec-
tions.

Programming the DDS with instructions requires two main steps:

Write - Write the value to the AD9852’s onboard buffer

Update - Move the data from the buffers to the AD9852’s internal

registers.

Only when the data is written into the internal registers will we see
effect of our program instruction. There are two ways to ”update” the
DDS, internal or external. In the default method, internal update, the
DDS will simply move the data from its buffers to the registers every
constant number of System Clock cycles. The constant is stored in a
set of the AD9852’s registers and can be modified by the user. When
the system updates, it will send 8 pulses through the I/O Update
pin on the AD9852 to inform the user that change has taken effect.
In external update mode, the user can control exactly when a change
should take effect by sending a signal through the I/O Update pin
on the AD9852. This pin is routed to the ”Update option” on the

12

Figure 4.2: Old DDS Box

DDS board, which can be addressed by writing a 2 to the 3-bit options
address in our instructions. [Figure 4.1]

The AD9852 chip has shape keying enabled by
default. This means, if we don’t disable it in our
code or give it a proper shape keying signal, we
will NEVER see a trace from the outputs. This
was painstaking to debug.

4.2 Debugging

The first version of the DDS shown in [Figure 4.2] has several bugs
which were very difficult to debug. I will document them here for
future references as similar debugging procedures may be needed.

13

4.2.1 The Delay Line

The first serious problem was not a problem in the design but a blunder
in building the board. Nevertheless, it was a gritty bug to find.

Symptoms/Potential Problems:

The Master Reset does not work properly. Later investigations reveal
that it needs to be held for an excessive period of time before the board
resets.

Solution:

After measuring some timing diagrams, we discovered that the 100ns
delay line immediately after the comparator was not delaying the signal
for 100ns but 100ms. In fact, the capacitor in the delay circuit turned
out to be 1000 times the required value. Since tiny surface mount
capacitors don’t have actual capacitance values printed on them, it is
usually impossible to measure its capacitance in a circuit. In this case,
the RC constant could be measured.

This bug was a complete shock since the ”load data” pin was also
connected to the delay line and the NI-DAQ card surely could have
sent the programming instructions to the DDS 2000 times over before
the ”load data” signal arrived even once. How were we able to program
the DDS at all? The following bug miraculously complemented this
problem.

4.2.2 The Load Data Pin

The following problem caused countless hours of headaches.

Symptoms/Potential Problems:

The output frequency does not lock to the reference clock. Certain
sequences of instructions are not loaded. Some instructions are written
to incorrect addresses of the AD9852 registers.

Solution:

14

At first it looked like no matter how we programmed it, whenever the
DDS was placed in multiplier mode (where the system clock reference
is multiplied internally by an integer from 4-20), the output frequency
would fail to the lock to the reference frequency. It would generate a
signal independent of the system clock frequency and slowly decrease.

This seemed like a possible bizarre malfunction of the AD9852’s in-
ternal Phase-Lock Loop so we tried to replace the AD9852 chip. This
wasn’t an easy feat since the back of the chip was a giant heatsink and
the only way to de-solder it was to either use a giant soldering iron and
prod the chip out from the back or bake it out in an oven. The iron
prod method requires clipping the IC’s legs while baking risks solder
spills on the rest of the connections on the board. Our electronic shop
did this and they chose the former method.

Replacing the $40 chip was a bust as the same problem persisted.
We went back to the drawing board and decided to experiment with
the programming and double check for software errors. This gave us
the first logical clue. We noticed that changing the order in which
some instructions were entered allowed the DDS to function properly.
The problem eventually was narrowed down to the fact that certain
bits bus were conditionally over-writing values in the internal register.
This was very odd as we tried to deduce functions for bit patterns
that caused the haywire. However, no simple and consistent logic er-
ror could be concluded. Thus, we decided to logic probe the signals
coming from the lines on the latch and their values on every possible
junction and time. Everything agreed.

During the aforementioned logic tests, we sent the instructions one
at a time and noticed a curious quirk. The DDS was receiving the
program instructions regardless of toggling the ”Load data” pin. This
lead to the miraculous observation that the pin was vaguely hinted as
active low, while the DDS board was designed to trigger it active
high. Problem solved. We simply bypassed an inverter with a wire.
Label B on [Figure 4.2].

4.2.3 The Update Pin

This problem was fixed before it could do any harm.

Symptoms/Potential Problems:

15

AD9852 or AND gate chip damaged.

Solution:

The I/O update pin, as described earlier, can be configured as both
input and output. During internal update (default), the AD9852 will
send out short pulses through the pin which is connected to the output
of the AND gate. If this pin on the AND gate is low an any instance
the I/O update pin is high, the 3.3V pulse will be shorted to ground
and possibly damaging both chips.
To fix this, we simply scratched off the connection.[Figure 4.2] The new
DDS versions will have fixed this problem by placing inline protection
diodes.

4.3 RF Amplifiers

The for a chip that operates on 5 watts, the AD9852’s output power is
abysmal. Selecting a power amplifier for the DDS is still being debated.
The most common application for the DDS in cold atom experiments
is to drive AOMs (Acousto-optic modulator). Typical input power
requirement is about 2 watt. Todd Meyrath and his experiments in
Austin uses a 4 watt amplifier from Mini-Circuits in combination with
attenuators while Dan Steck’s group is supposedly building their own
custom amplifier for project ZOINKS. If they are successful, we will
most likely inherit their home-built amplifier for our experiments as
they are significantly cheaper.

Another variable to consider is that the DDS’s output power is so
low (¡¡ 0dBm) that it doesn’t even satisfy the input power ratings on
most power amplifiers. Thus a pre-amplifier is needed. In the new
DDS design by the UBC Electronic Shop, this pre-amp will be built
onto the board.

A Mini Circuits 2-4 watt amplifier typically costs
$500 USD.

4.4 The new DDS boards

The new and improved DDS boards will feature all the fixes to the
bugs mentioned above. Todd Meyrath have already ”mass produced”

16

Figure 4.3: The New DDS System for QDG

17

the version 2.0 DDS boards. However, our UBC electronic shop is
building a more complicated version. The notable difference is that it
will replace the digital addressing logic ICs with a CPLD. The exact
specifications are unknown as no design schematic have been produced
yet. We have asked that they be at least compatible to two main things:

What is CPLD? Complex Programmable Logic
Device allows digital logic to be programmed and
modified at will. It is basically a giant set of prim-
itive logic gates such as AND and OR

• The UT Bus System

• The new DDS rack mount shown in [Figure 4.3] (Also being
designed by the electronic shop)

The rack mount box will allow up to 14 new DDS boards to be lined
up in one enclosure and a set of power amplifiers in a separate box
beside it. With each DDS board running at 5 watts and each amplifier
at 70 watts, the DDS System will be the alpha energy monger on the
block.

18

Chapter 5

The Control Software

To coordinate and control all the ZOINKS devices and run an experi-
ment, some kind of software is required. Since cold atom experiments
typically require large collections of linear instructions and very lit-
tle feedback until the end, ”control software” have been traditionally
hard-coded using procedural languages such as C or Basic for specific
experiments. However, as experiments become more complicated, im-
plementing an object-oriented software structure may prove to be a
more scalable and reusable solution.

5.1 UT Control

The control software being used in Mark Raizen’s lab at UT Austin
was written by Florian Schreck. [Figure 5.1] The basic idea of this
program was as follows:

1. Code experimental procedures

2. Enter parameters

3. Run experiment

4. Acquire data

Control, coupled with Vision (a data acquisition and analysis
program also written by Florian) worked remarkably for the experi-
ments in Austin. However, the feasibility of using Florian’s program
for the experiments at QDG have been debated countless number of
times.

19

Figure 5.1: Florian’s Control Program Screenshot from his webpage

Here is a summary of the controversy:

Pros:

• Control is already written and can save time in the short term.

• Control is designed to run with many instruments common to
cold atom experiments.

Cons:

• Control is built in Visual C++ and we want to eventually mi-
grate to Linux.

• Control requires writing new experimental procedures into the
code itself and requires to be recompiled everytime something
changes.

• Control isn’t properly documented, modifying it requires cloning
Florian and have him work here as a robot.

A proposed plan for a new control software system to address the
shortcomings of Control is discussed in the next chapter.

20

Chapter 6

Z.759

This project was developed with the DevC++/MingW environment
allowing the programs to be ported to other operating systems without
too much problems.

6.1 Architecture

The goal of Z.759 is to establish a scalable framework for creating
experimental control software. Part of the code I have already done,
including a proof of concept UT bus test utility. However, there is
still some debatable areas that needs to be thought through carefully
before implementing. Thus like so many mentioned here, the future of
this project is uncertain.
The main design aim of Z.759 revolves around several major concepts:

• All experimental sequences are written in XML

• There are 2 types of software device drivers. One type represent
UT bus devices and do not actually drive any hardware but only
produces binary/hex bit patterns that can be sent to the UT
bus. The other type, such as the driver for the NIDAQ card, are
drivers in the classical sense where they interact with hardware.

• The kernel code is only used for driving UT bus devices.

[Figure 6.2] shows a diagram of the program flow for Z.759.

A The main program will start by parsing the input XML documents
specifying the experiment sequence (which represent functions
and parameters) and the hardware configurations (devices and
addresses).

21

Figure 6.1: Z.759 Kernel UML Diagram

22

Figure 6.2: Z.759 Software Architecture

23

B Once the parsing is complete, the program will have a master list of
all the devices in the system and instructions the user wishes to
execute. Based on the device driver libraries, the program can
then translate the instructions into a pure binary form that can
be sent directly to the UT bus as a digital wave pattern.

C Finally, the program can choose to physically output the pattern
using an appropriate UT bus driver (NIDAQ or FBD).

6.1.1 XML

What is XML? The Extensible MarkUp Language
is very similar to HTML but allows for custom
tags. Thus XML can be viewed as a language-
building language.

XML has caught on during the recent years as a very popular
method for building data storage models and custom markup lan-
guages. XML’s main advantage to this project its readability to both
human and machine. [Figure 6.3]

• human interpretability is trivial and can be enhanced by writing
GUIs to produce a visual representation of the content.

• machine interpretability has been made simple by many publicly
available XML parsers such as Expat or Xceres.

Nevertheless, we still need to design a set of rules and tags in this
new language. Lets call it the Experimental Sequencing Lan-
guage, or ESL. There is still considerable work to be done on build-
ing this pseudo language. However, below demonstrates the starting
point. Here is a block of ESL code that will declare all the devices in
the system.

<?xml version="1.0" encoding="ISO-8859-1"?>

<HCXML>

<L0DEVICE DID="0" TYPE="NICARD" NAME="NICARD0" ADDR="0"

OSPEED="20MHZ">

<L1DEVICE DID="1" TYPE="DO" NAME="DOBOARD0" ADDR="3"/>

<L1DEVICE DID="2" TYPE="DO" NAME="DOBOARD1" ADDR="4"/>

24

Figure 6.3: Human Vs. Machine on XML

</L0DEVICE>

<L0DEVICE DID="3" TYPE="FBD" NAME="FBD0" ADDR="1">

<L1DEVICE DID="4" TYPE="AO" NAME="AOBOARD0" ADDR="2"/>

<L1DEVICE DID="5" TYPE="DDS" NAME="DDSBOARD0" ADDR="1"/>

</L0DEVICE>

<L2DEVICE DID="6" TYPE="SHUTTER" NAME="SHUTTER1" USES="1"/>

<L2DEVICE DID="7" TYPE="NEWDEVICE" NAME="NEWDEVICE1" USES="4 5"/>

</HCXML>

Eventually, all possible tags and parameters will have to be formal-
ized. But currently, anything shown in the sample here is prone to
change as new features are implemented.

6.1.2 the Master Tables

During the parsing, each valid device element, ”ZElement” encoun-
tered is stored in a ”Master Device Table”; each valid instruction,
”ZInstructElement”, is stored in a ”Master Instructions Table”.
Instantiation of the device objects will be done when the associated

25

”ZElement” is created.

A ZElement looks like this:

typedef struct ZElement{

DEVCLASS theclass;

string name;

int32_t ID;

int32_t addr;

string type;

void* obj;

};

The ZMasterDeviceTable and ZMasterInstructionList classes
[Figure 6.1] are singleton classes, which means only one static in-
stance of each can exist in a program. Both tables will use a map
structure to associate each element by a key. Unless this software will
be implemented for an overwhelming number of devices, searching op-
timizations are not taken into consideration.

What is singleton? Singleton is a design pattern
in software engineering that forces users to only
be able to create the instance once through a sta-
tic function and making the constructor private.
Since this type of class occurs so common, it has
been given a generic name.

6.1.3 the Device Drivers

The drivers are represented in a 3 layer hierarchy [Figure 6.1]. A
”ZDevice” is at the top, representing any device that can exist on or
be controlled by the UT bus.

These devices are divided into 3 sub classes:

• L0 Device - a bus driver, NIDAQ card or FBD

• L1 Device - a UT bus device, Analog/Digital Out or DDS

26

• L2 Device - a device that is driven by any combination of L1
Devices.

It should be emphasized again that the ”Device Drivers” in Z.759
DO NOT necessarily mean they interact with hardware. The drivers
for L1 and L2 devices will produce 32-bit wide UT bus instructions
while L0 device drivers actually interface with hardware.

Here is how the program flow looks from a device point of view.
For simplicity, lets assume there is only 1 L0 device in the system:

1. the L0 device is created

2. a set of L1 and L2 devices are created and associated with the
L0 device.

3. the parser encounters a set of instructions and ask the L1 and L2
device drivers to generate the corresponding UT bus instructions
(integers).

4. the main program asks the L0 device to output these instructions
to the UT bus.

Since each L0 device physically drives a collection of L1 and L2
devices, each set of L1 and L2 devices must be associated with an L0
device. This association must be made very clear in the Master Device
Table as well.

6.2 Problems

This section discusses some of the unresolved problems encountered
while implementing this project.

6.2.1 State Dependence

Some functions in an experimental sequence may be state dependent.
Ie: they require information about the previous state of the device.
Common examples of the state dependent function include increment/decrement
a value, toggle a switch etc.

Here even the digital out boards physically require state informa-
tion to drive individual lines since all 16 lines are modified together by

27

1 instruction.

One logical method of implementing state dependent functions is to
write state variables into each device driver. The variables are changed
everytime to reflect the changes in state. Also the initial state of the
devices can be stored in an XML block somewhere. However, this
implementation must be considered very carefully because it effects
another intricate detail, the GoBackInTime function.

6.2.2 GoBackInTime?

Upon first hearing of the GoBackInTime function, one might be left
dazzled and confused. This section will try to clarify the mystery its
significance in this project.

Figure 6.4: Going back in time

GoBackInTime was coined by Florian Schrek in writing his con-
trol software. In writing control sequences, it is often the case that
we might need to specify an event to occur x time units BEFORE
another event. For example, if we have a camera and there is a known
mechanical delay between when the shutter is triggered and when the
shutter actually opens, we need to compensate for that by ”going back
in time” and insert the open shutter instruction.[Figure 6.4]

Some ambiguities arise when we play with time and space, even in
a program. Consider the following situations:

It hasn’t been decided yet how GoBackInTime will be imple-
mented but the solution will definitely need to handle these cases.

28

Figure 6.5: Conflicting State Variables

Figure 6.6: Ambiguous Timing Resolution

6.2.3 L2 Drivers

The L2 drivers are meant to be representations of devices being driven
by the UT bus L1 devices. It should be designed so that users can
easily modify and/or add new drivers with ease. Therefore, their im-
plementation should be simple and modularized.

Thus it is questionable whether writing L2 drivers as classes in
C++ in a fashion similar to L0 and L1 drivers is feasible. If so, a
template for these classes must be made as clean as possible.

We could also consider a different implementation: allowing the
user to define L2 devices and functions in XML. This involves formal-
izing another set of rules for ESL and adds another layer of complexity

29

to the parser.

6.2.4 Implementing Non-UT bus devices

One might ask how the other experimental control devices fit in with
Z.759. The answer is they don’t. Z.759 is designed to be a module
that can be easily incorporated into other programs.[Figure 6.7] It is
up to the user to decide whether a master control program should be
written to encompass all the experimental controls, such as Florian’s
Control.

Figure 6.7: Overall Control Setup

What if we want to time an event of a non-UT bus device to Z.759?
Use a digital trigger. Most GPIB or serial lab instruments will have
trigger inputs to allow for an event to occur at precisly the moment it
receives the trigger signal.
The timing mechanism of the UT bus driver is by far superior to other
protocols such as GPIB or serial. Don’t even consider software timing.
There is no guaranteed consistency nor precision.

6.3 Demo Utility

A working demo utility [Figure 6.8] based on Z.759 has been written
to:

• Demonstrate some of the concepts in Z.759

30

Figure 6.8: The Demo Program

• Serve as a testing utility for UT Bus devices

The demo program uses the L0 and L1 drivers to demonstrate the
basic output functions of each UT bus device. For example, to output
a sin wave with the DDS, the user can:

• Set the parameters such frequency,clock,mode etc.

• Produce the corresponding output buffer with the DDS driver.
(UT Bus instructions)

• Modify the instructions at will. (If the user knows what they
mean)

• Output them with the NiDAQ driver.

31

Chapter 7

QDG and ZOINKS: The Big
Picture

Figure 7.1: Overview of QDG Experimental Control System

[Figure 7.1] is an extremely useful diagram drawn up by Kirk show-
ing the entire experimental setup goals at QDG. Evidently, one can also
see the number of ZOINKS projects in this picture and their signifi-
cance to the QDG experiments.

32

Appendix A

List of References

All the references here are either hyperlinks to webpages or the Refs
directory under the directory of this manual.

Home of Control All the manuals for the UT device drivers and
Control are available here. But I’ve put copies in the Refs di-
rectory under the directory of this manual.
http://george.ph.utexas.edu/~control/

Home of QDG Control The control projects being developed at
QDG.
http://www.phas.ubc.ca/~qdg/ControlSystem/

Home of ZOINKS The project list for ZOINKS. http://atomoptics.uoregon.edu/~zoinks/

Home of Dan Steck’s Control project The project list Dan’s lab.
http://www.steck.us/control/

AD9852 Manual The manual for the AD9852 chip used in the DDS.

AD9852 Manual The National Instruments manual for the Ni653X
series cards.

Ethernut-GPIB Manual The Ethernut-GPIB manual.

33

http://george.ph.utexas.edu/~control/
http://www.phas.ubc.ca/~qdg/ControlSystem/
http://atomoptics.uoregon.edu/~zoinks/
http://www.steck.us/control/

Bibliography

[Control] Todd Meyrath, Florian Schreck, A Laboratory
Control System for Cold Atom Experiments,
http://george.ph.utexas.edu/ control/, 2004, Atom
Optics Laboratory Center for Nonlinear Dynamics
and Department of Physics University of Texas at
Austin

[Steck] Daniel A. Steck, Ethernet-Based Experiment Control
Architecture, http://www.steck.us/control/

[AD9852] Analog Devices CMOS 300 MSPS Complete DDS,
2004.

[NIDAQMANUAL] National Instruments Corporation, NI 653X User
Manual for Traditional NI-DAQ High-Speed Digital
I/O Devices for PCI, PXI, CompactPCI, AT, EISA,
and PCMCIA Bus Systems,2005

34

	About This Report
	A Brief History of ZOINKS
	The Texas Box
	50-Pin Bus Interface
	Analog Out
	Digital Out
	UT Bus Drivers: Past and Future
	The Ni635X card
	The Fast Bus Driver

	DDS
	Programming the DDS
	Debugging
	The Delay Line
	The Load Data Pin
	The Update Pin

	RF Amplifiers
	The new DDS boards

	The Control Software
	UT Control

	Z.759
	Architecture
	XML
	the Master Tables
	the Device Drivers

	Problems
	State Dependence
	GoBackInTime?
	L2 Drivers
	Implementing Non-UT bus devices

	Demo Utility

	QDG and ZOINKS: The Big Picture
	List of References

