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Abstract

The aim of this thesis is to design and characterize an imagining system capable of resolution on

a few micron scale. This system was characterized based off of how it transformed the image of

a 1µm pinhole. It was found that the system performed better if the the aperture was placed

between the aspheric and the dichroic mirror as opposed to placing it before the aspheric. The full

system was found to have a resolution of at least 2µm based off of the FWHM of the diffraction

pattern from the pinhole. A strong asymmetry was found when the full system was assembled

and it was further enhanced when the aperture was displaced from the Fourier plane. While the

cause was not determined, most of the elements were eliminated as the origin of the asymmetry.

The experimental procedure for investigating the momentum space entanglement of a degenerate

fermi gas was subsequently detailed along with the plans for creating a novel new device called a

dilating lattice.
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Chapter 1

Introduction and Motivation

In recent years, due to a series of breakthroughs, the area of Atomic, Molecular and Optical

Physics (AMO) has progressed at an incredible rate. To augment regular cooling technology,

physicists began using lasers, in conjunction with electric and magnetic fields, to manipulate

particles. This method used radiation pressure to simultaneously localize and cool via the Zeeman

and Doppler shifts respectively. These studies resulted in optical tweezers, lattices, dipole traps

and magneto-optical traps. With these tools physicists were able to then experimentally create

the first Bose-Einstein condensate (BEC) in 1995 [3]. A BEC is a useful tool for studying a

wide range of experimental topics from quark gluon plasmas (via a transient BEC), superfluid

behaviour (via the BEC-BCS crossover), and black holes (via the flow of phonons in a BEC

forming a sonic black hole).

One of the main methods of gathering data about an ultra-cold system is through either

absorption or fluorescence imaging. Therefore, it is also important to develop imaging techniques

to collect appropriately accurate data in such unique systems. Many imaging apparatus could

either image very small microscopic systems with great precision, or image macroscopic systems,

but not both. Hence, physicists set out to make imaging systems with higher resolution which

would be able to probe both local and global properties of their systems. It wasn’t until almost

15 years later that Markus Greiner [5] would develop the first so-called quantum gas microscope.

Unfortunately, this system is technically difficult, expensive and required the subject of interest

to be confined to a 2D plane.

However, this lead to many other groups developing their own high-resolution imaging systems,

and this thesis details development of such an apparatus. This upgrade in imaging capability

would result in a variety of new experimental opportunities. One of particular note is the ability

to study many-body states through quantum noise analysis as proposed by Eugene Demler [4].

Such data might be taken through a so-called time-of-flight experiment, whereby a system is

released from its trapping potential, allowed to expand and then subsequently imaged. One can

then correlate the position of a particle with its momentum and hence study the underlying

entanglement between modes in momentum-space.

With the recent interest in quantum information, such studies of entanglement have played a

large role in developing areas from quantum cryptography to quantum gravity. As one of the many

systems in which one can study entanglement, ultra-cold gases have the unique characteristic of

having a very low noise level and a wealth of techniques to both manipulate and analyze systems.
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1.1. High-Field Imaging

Hence, developing an appropriate data acquisition apparatus is paramount, especially when it

can have an impact on so many areas.

A more immediate, scientific motivation, for this imaging system is an experimental test of

some recent work by Mark van Raamsdonk [1, 2]. These works consider the momentum-space

entanglement in a fermi gas at ultra-cold temperatures and would therefore provide an interesting

opportunity to compare theoretical and experimental results. It would expand on some previous

work by Deborah Jin [6], which means it is a natural extension of the characterization tests for

our imaging system. This is due to the fact that Jin’s work provides a more simplistic case

in which one can study momentum-space correlations which would serve as a benchmark test

of the imaging apparatus. Arguably more important though, is the fact that experimentally

checking van Raamsdonk’s results presents a rare opportunity to test calculations done in the

highly theoretic oriented realm of high-energy physics.

This system has been engineered to have a very high resolution, with the aim of doing these

momentum-correlation measurements in order to compare with theoretical work. We present the

design and characterization for the imaging system, as well as the necessary framework for the

completion of the system in time.

1.1 High-Field Imaging

Another benefit to imaging along the vertical axis is the ability to image efficiently at high

magnetic fields. By this, we mean that one of the transitions of interest requires circularly

polarized imaging light in order for the light to interact with the particles. This imaging transition

is from a state with mJ = −1�2 to mJ = −3�2 and our light will then need ∆mJ = −1. This stems

from the selection rules for this particular transition but what it means is that if the polarization

is different, the light won’t interact with the particles in the trap and therefore the image won’t

register any information regarding the particles.

In order for the particles to see purely right- or left-handed circularly polarized light, the light

must propagate along the quantization axis of the atoms. It is at this point that the orientation

of our system is important. As the magnetic field, generated by our coils, defines the axis of

quantization to be along the vertical axis, as depicted in Figure 1.1. Hence, an imaging system

aligned along the vertical axis is required in order to have the imaging light efficiently interact

with the gas cloud.

2



1.1. High-Field Imaging

Figure 1.1: A cartoon to demonstrate the basic environment which surrounds the ultra-cold gas.
The arrows represent laser beams the create that Magneto Optical Trap (MOT) along with the
current flowing in the rings which generates a magnetic field. In this arrangement, the particles
in the MOT feel a spatially varying radiation pressure which localizes the cloud in the centre of
the trap.

At present, the system is aligned horizontally which means that when the imaging light is

projected onto the quantization axis, the best one can achieve is an even superposition of right-

and left-handed circularly polarized light. This is produced by having light linearly polarized,

with a changing projection onto the horizontal axis which results in the highest scattering rate

for this orientation. Unfortunately, this means that each atom only interacts with every second

photon. This causes a severe undercounting of the number of particles in the trap because much

more light passes through the cloud than one might expect. This means the imaging system

would then be much more susceptible to noise since the intensity of the signal is halved. This

can be corrected during the analysis, but that in itself has complications. Therefore, having the

imaging system aligned along the quantization axis would be beneficial for high-field imaging.

3



Chapter 2

Imaging Theory

Considering the bulk of this thesis is centred on building an imaging apparatus, it seems appro-

priate to first discuss the relevant background theory. We will start by comparing our system

with an analogous camera which a photographer might use. These cameras usually consist of a

main lens, an aperture and film. Different lenses are used to give different magnification and focal

length, while different sensors change the resolution and noise. Lastly, the role of the aperture

is to adjust how much light reaches the sensor. When someone wishes to adjust their images

further, they can buy filters that block out light of certain wavelengths, or polarizers that only

allow light of a certain polarization to pass through.

Each of these elements is present in the design of our imaging system and they each play a

critical role in its setup. The two main elements on which we will focus, however, are the lens

and the aperture, as the rest play more customary roles in the system. Hence, we will dedicate

this section to their respective roles and how they can be used together to improve the quality of

our system.

2.1 Fourier Optics

Before we discuss the specifics of our imaging theory, it will prove useful to review some of the

concepts of Fourier optics. In doing so, we will develop the language in which we will discuss

diffraction limited imaging and spatial filtering in the next couple of sections. At its core, Fourier

optics is a description of the propagation of light in terms of individual waves of defined frequency.

Thus it is heavily based on harmonic analysis and is most useful when applied to linear systems.

To start, we define the input of our system as some arbitrary function f(x, y). This function
has a corresponding Fourier transform F (νx, νy) where νx and νy are the spatial frequencies in

the x and y directions. They are called spatial frequencies because they are in units of cycles per

unit length. Now, to give some meaning to f(x, y), let us define a plane wave as

U(x, y, z) = Ae−i(kxx+kyy+kzz) (2.1)

where A is some complex amplitude and �k is the usual wavevector. We will henceforth write

f(x, y) = U(x, y,0) = Ae−2πi(νxx+νyy) (2.2)

4



2.1. Fourier Optics

where we have just used 2π�ν = �k. Note that k2 = (2π�λ)2 so one can determine U(x, y, z) based
off of f(x, y). Since we can write an arbitrary travelling wave U(x, y, z) as a superposition of

these plane waves, if we understand how our imaging system transforms plane waves, we can then

reconstruct how it transforms an arbitrary wave.

It is with this in mind that we define the transfer function H(νx, νy) as the factor by which we

multiply the initial harmonic function to get the output harmonic function. To illustrate, consider

the initial harmonic function given in Equation 2.2 and how it would evolve travelling through

space along the z-direction to some point d. Then we expect the output harmonic function to be

given by

g(x, y) = Ae−2πi(νxx+νyy+νzd). (2.3)

Hence, we define the transfer function for free space, by a distance d, to be

H(νx, νy) = e−2πid
�

λ−2−ν2x−ν2y
. (2.4)

In general, we write the output harmonic function as

g(x, y) =
∞
�
−∞

∞
�
−∞

H(νx, νy)F (νx, νy)e−2πi(νxx+νyy)dνxdνy (2.5)

for some arbitrary transfer function.

Arguably more useful, and more directly applicable to many scenarios is the impulse response

function h(x, y) which characterizes how the system transforms a point source at the origin of the

coordinate system. While it may not be immediately apparent, it is actually the Fourier transform

of the transfer function H(νx, νy). Hence, if we have two elements with transfer functions H1 and

H2, we can multiply them or we can take the convolution of their respective impulse response

functions. Thus, we get our general relation

g(x, y) =
∞
�
−∞

∞
�
−∞

f(x′, y′)h(x − x′, y − y′)dx′dy′ (2.6)

relating the input and output waves via an arbitrary impulse response function.

2.1.1 Fourier Transform Via a Lens

A powerful tool in optics is the ability to take the Fourier transform of an image by placing a

lens at a special point. Recall that a plane-wave, with a small incident angle θx, passing through

a lens is transformed into a paraboloidal wave that is focused at some point x = θxf = λνxf as in

Figure 2.1.

5



2.1. Fourier Optics

Figure 2.1: A plane wave, incident at an angle of θx is transformed, by a lens, into a paraboloidal
wave focused at x = θxf where f is the focal length of the lens. This relationship is only valid for
small angles θx.

Hence, we have that

g(x, y)∝ F � x

λf
,
y

λf
� (2.7)

At this point, we will skip the derivation of the proportionality factor as Equation 2.7 is all we

will need to understand spatial filtering.

2.1.2 Spatial Filtering

Because lenses have this useful property that we can use them to take the Fourier transform of

a signal, we can add other elements to manipulate this Fourier transform before reconstructing

the image. The application we are concerned with is what’s called spatial filtering. Just as the

name implies, you place some sort of object or obstruction at the focal plane (also referred to as

the Fourier plane) which subsequently blocks some of the frequencies from travelling further.

Most frequently this object will come in the form of an aperture, and it will then allow the

lower frequencies to propagate while blocking the higher frequencies. It is interesting to note that

although there are obstructions in the light’s path, it can still retain most of the information as

shown in Figure 2.2.

6



2.2. Diffraction Limited Imaging

(a) (b) (c)

Figure 2.2: (a) The Fourier transform presented with its corresponding image. (b) A square
aperture has been applied to the Fourier space of the image, blocking out all high frequencies.
This causes the image to become blurry. (c) A square object has been used to filter out the low
frequencies, resulting in a sort of trace of the image. Image credit: http://practicalfmri.

blogspot.ca/2011/08/physics-for-understanding-fmri_15.html

2.2 Diffraction Limited Imaging

Now with our Fourier optics framework, we are equipped to discuss how light behaves when

travelling through an aperture in a more general sense. When we were discussing filtering, we

assumed that light was blocked by the aperture and the rest was transmitted without any change

in behaviour. This works well in some cases, but it is helpful to do a more thorough treatment

using the Fraunhofer approximation. One might wonder why not simply calculate the behaviour

entirely (without approximations that is), however this quickly becomes increasingly complicated,

and in most cases unnecessary. Hence, we will discuss Fraunhofer diffraction and apply it to our

particular case of interest, the circular aperture.

2.2.1 Fraunhofer Diffraction

To start, we discuss the seemingly unrelated concept of the Fourier transform in the far field limit.

In this case, if the propagation distance d is sufficiently long, we see that only plane waves with

7
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2.2. Diffraction Limited Imaging

angles θx ≈ x
d and θy ≈ y

d will contribute to our amplitude. Hence, we see that this corresponds

to a wave with spatial frequencies νx ≈ x
λd and ky ≈ y

λd . This then means we have that

g(x, y) ≈ i

λd
e
−ikd

F ( x
λd

,
y

λd
). (2.8)

This results in what is called the Fraunhofer approximation and it is evidently more accurate

when d becomes larger.

Fraunhofer diffraction is a theory that states that uses the Fraunhofer approximation to

determine that behaviour of the propagation of light after the aperture. In this case, for an

incident wave with intensity
√
I0, we write that right after the aperture

f(x, y) =�I0p(x, y) (2.9)

where p(x, y) is called the pupil function and it is determined by the geometry of your aperture.

In this case, out output function is

g(x, y) ≈�I0
i

λd
e
−ikd

P ( x
λd

,
y

λd
) (2.10)

where P (νx, νy) is the Fourier transform of the pupil function. Hence, the intensity we would see

would be given by

I(x, y) = I0 1

(λd)2 �P (
x

λd
,
y

λd
)�2 . (2.11)

2.2.2 The Resolution Limit

Given Equation 2.11, we can calculate the resulting diffraction pattern for a variety of geometries.

The one of particular interest is the circular aperture of diameter R with a corresponding pupil

function given by

pR(x, y) =
�������

1 ∶�x2 + y2 ≤ R
0 ∶ otherwise. (2.12)

For this function, we have

I(x, y) = I0 �J1(2πRr�λd)
(πRr�λd) �

2

, r =�x2 + y2 (2.13)

where J1 is the first order Bessel function. This intensity distribution is called the Airy pattern

and the central peak is called the Airy disk. In particular, one will find that the angular position

of the first minima is given by

θ ≈ 1.22 λ

2R
(2.14)
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2.3. Spherical Aberration

which corresponds to a spatial separation of

r = 1.22 λd
2R

. (2.15)

As a note, the numerical aperture NA is given by NA = f�d. As well, one will find that the full

width at half max of this Airy pattern is given by

FWHM = 1.028 λd
2R

. (2.16)

This applies directly to our understanding of the resolution of a system as the Rayleigh

criterion gives the resolution based off of how far apart two point sources can be so as to remain

distinguishable. This comes about through the diffraction of light throughout the system and so

we say that the two points are resolved if

r ≥ rmin, rmin = 1.22 λd
2R

(2.17)

which is precisely the distance from the maxima to the first minima. Hence, two point sources

have to be separated by a large enough distance so that their maxima do not lie inside of the

others’ minima.

Now, one can see from this equation that decreasing the aperture size makes the limiting

distance larger which ends up lowering the resolution of the system. It also has the added effect

of decreasing the total amount of light that reaches the camera, or sensor, which is generally

detrimental.

2.3 Spherical Aberration

Two very common types of aberration are chromatic and spherical aberration. Since the imaging

apparatus must be aligned for the one frequency of imaging light, chromatic aberration isn’t a

pressing concern. Spherical aberration, on the other hand, is a significant problem since it is

inherent in almost all lenses. It is caused by the increased refraction of light rays that strike the

outer regions of the lens compared to the center. This results in the rays focusing at different

points depending on where they hit the lens as depicted in Figure 2.3.

One can mitigate this effect by using a complex system of lenses, a specially designed aspheric

lens or an aperture. The aperture method is what will be used in this thesis as it doesn’t require

buying any costly components and is also relatively simple to implement. By placing the aperture

at the Fourier plane, one can block the rays that aren’t focused by at the focal plane. In principle,

one can continue to aperture down until all but the perfectly focused rays are let through and

hence get rid of all of the aberrations.
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2.4. Fluorescence and Absorption Imaging

Figure 2.3: The top image is an example of what the rays would look like if there was no spherical
aberration. The bottom image depicts a lens with spherical aberrations where the rays focus at
varying positions along the horizontal axis.

In practice, there is some tradeoff between reducing the spherical aberrations and decreasing

the resolution which will limit how much of the aberrations can be eliminated. This limit will

be found experimentally and is one of the main aspects of characterizing the imaging system. In

certain systems, one can forego this filtering to and attempt to correct for the spherical aberrations

in the analysis, however it presents certain complications when looking at correlations in an image.

This is because the distortion in the image will cause deviations away from the true intensity of

the pixels, which then can cause false correlations to arise. This is particularly harmful when

looking at small fluctuations in the image which is how one tests for entanglement as detailed in

[4].

2.4 Fluorescence and Absorption Imaging

We will finish the chapter with a quick discussion of the two main types of imaging. The first,

absorption imaging, revolves around the scattering of light away from the camera, which means

objects cast a shadow. This shadow is then detected and based off of how dark it is, one can infer

the density of the gas cloud at that location.

This is arguably the easier of the two imaging types, and it is also more frequently used as the

subject can be moving while the image is being taken. While the versatility is a strong benefit,
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2.4. Fluorescence and Absorption Imaging

it is heavily dependent on the atomic scattering rate which is defined by

Γ = Γ0

2

sat

1 + sat + (2δ�Γ)2 (2.18)

where sat = I�Isat is a parameter which determines how close one is to saturation. This equation

is simplified for our apparatus, where (2δ�Γ)2 ≈ 0, sat ≈ 1 and Γ0 ≈ 6MHz for 6Li. This means

Γ ≈ 1 − 2MHz.

Now, the signal to noise ratio, hereby denoted by SNR, goes like

SNR∝ Γ ⋅ t ⋅QE√
A ⋅ I ⋅ t ⋅QE

(2.19)

where t is the exposure time, QE is the quantum efficiency of the apparatus, I is the intensity of

the light, and A is the area of a particles possible position. Hence, for I being small, Γ ∝ Γ0
2
sat

which means for I = 2Isat
SNR∝

�
t ⋅QE

A
. (2.20)

To increase the SNR, one could buy a very expensive camera to increase the QE, or one could

increase the exposure time. Unfortunately, since Li is very light, the recoil from photon scattering

generates a large velocity and therefore atomic drift. This will blur the image, which means there

is an effective cap on the exposure time.

The alternative to absorption imaging is fluorescence imaging whereby atoms absorb light and

re-emit it in a different direction. The emission light can be collected along an axis perpendicular

to the illumination axis and the image will be bright if there is a high density. Since the intensity

of the imaging light is weak, it needs to act on a relatively large timescale. This would also lead

to atomic drift and so one must implement a pinning lattice to hold the particles in place. Then

the limiting factor is the timescale on which atoms would heat out of the trap.

Fortunately, for zero field imaging, one can actually use either D1 or D2 light to simultaneously

cool and image [7]. For low and high-field imaging, hyperfine splitting causes a difference between

the cooling and induce spontaneous emission, which can then be imaged.
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Chapter 3

Imaging System Design and

Capabilities

Given the nature of the experiments we wish to conduct in the future, we aim to build an imaging

apparatus that will image down the vertical axis and have a sufficiently high resolution. Equally

important is the quality of image and hence a large part of this work is dedicated to reducing

spherical aberrations. The reasons for the high resolution and lack of spherical aberrations are

usual desires in a good imaging system. The orientation is mainly due to the orientation of our

other trapping beams which cause a loss of intensity when doing high field imaging in a horizontal

system.

3.1 Experimental apparatus

Before addressing the imaging system, it is important to understand the basic design of the

experimental apparatus and hence what the imaging system must achieve. This information will

motivate our overall design of the system and also outline its restrictions.

The main section of the apparatus is centred on the cell which is the container in which

the particles are held. Above and bellow the cell are a pair of magnetic coils which provide an

inhomogeneous magnetic field centred on the trap. Then as particles travel away from this centre,

they’re energy levels are shifted by the Zeeman effect.

As depicted in Figure 1.1, six MOT beams are directed at the cell which take advantage of the

Zeeman shift to cool the particles in the cell. This works by a similar principle to the doppler shift,

whereby particles moving towards the beams will have their energy levels shifted in such a way

that they can be excited by the photons in these MOT beams. The beams have a frequency tuned

such that particles with a low enough kinetic energy will not ‘see’ the photons in these beams and

hence will remain undisturbed in the middle of the cell, whereas the particles moving towards

the beams, and those not located sufficiently close to the centre, will be affected by the beams.

These particles will absorb photons and radiate them in a random direction, meaning there is a

net moment shift counteracting their movement. This causes the particles to simultaneously be

cooled and localized in the centre of the cell.

A second beam, travelling along the vertical axis, called the IPG beam is responsible for the

dipole trap. This beam has a narrow waist, and its interference along the vertical axis leads to
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3.1. Experimental apparatus

Figure 3.1: A 3D plan of the experimental apparatus. The cell location and area in which the
imaging system is planned to be located are noted.

pancake-like potentials. These further localize the particles and provide stability. Along with

the two MOT beams travelling along the vertical axis, the IPG beam and the imaging beam will

also travel along the same axis and must subsequently be dealt with, to a certain degree, by the

imaging system. Along with this comes the environment within which this apparatus is placed.

This is detailed in Figure 3.1 and one can see that the spacing below the setup is limited. While

it may be possible to build the imaging system above the apparatus it stands to reason that the

stability of a system placed above the apparatus would be significantly lower than that placed

below. As stability is highly relevant when one considers the quality of an image, this means the

dimensions below the apparatus are yet another restriction placed on the design.

Considering now that this apparatus deals with atomic and molecular clouds on the order of

100µm, it is important to design the system with a wide enough field of view, depth of field and

resolution to capture the cloud in its entirety. The field of view is set by the size of the CCD chip

on the camera and the magnification of the system, while the depth of field and resolution are

parameters determined by the lens and subsequent optical elements. In order to probe correlations

between momenta in such a cloud, a resolution of approximately 2µm is required. While one might

reasonably aim for a higher resolution, our apparatus is made for Li which is very light and hence

travels very quickly. For an average exposure, a Li atom will drift approximately 2µm causing

any further increase in resolution to be wasted.
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3.2. Imaging System Design

Item Name Part Name Dimensions

Cell Hellma UVH Cuvette 34 ± 0.5mm wide, 110 ± 0.5mm long

Aspheric Lens Thorlabs AL5040-B 50 ± 0.1mm diameter, 15.5mm thick

Dichroic Mirror Thorlabs DMLP900L 50.8mm diameter

Beam Cube 25.4mm side length

Camera Apogee Alta U32 14.8mm×10.0mm imaging chip

Table 3.1: A table of the most crucial elements for the imaging system. The MOT beam focusing
lens and mirror were omitted as they won’t impact the imaging quality. The aperture and wave
plate were omitted as they are flexible.

3.2 Imaging System Design

When designing the system, the major concern was how imperfections, causing errors like spherical

aberrations, would impact the resolution of the system. The method we employed to deal with

these spherical aberrations was to aperture down at the Fourier plane, effectively blocking the

unfocused beams and recovering our original image. However, the placement of this aperture was

uncertain as we were unsure, at the start, about the geometry and logistics of the system.

Before the process of designing the system is detailed, the final design will be presented here

for two reasons; first to illustrate the basic layout of the system as changes were mostly made

concerning the apertures location, and second to motivate the reasoning behind the design process.

The design of the system is depicted in Figure 3.2, although the final distances between many

elements have not been set here due to their dependence on later data. While not immediately

apparent from this diagram, one of the main issues with the system is the spacing of the elements

along the beam path. This system has to separate three beams, as depicted in Figure 3.3, and

the MOT beam is approximately one inch in diameter when it originally hits the aspheric lens.

This means that after two times the focal length, the MOT beam will return to this size.

As such, the optics must be located sufficiently close to the aspheric so as to encompass the

entire beam or new, larger parts need to be purchased. If the MOT beam is clipped at some point,

it will result in inhomogeneities in the trapping potential which ultimately lowers the quality of

the trap. Considering this upgrade is taking place amongst many other projects, including the

implementation of a Zeeman slower, the aim was to use components on hand to build the imaging

system. Hence, it was decided to build the system as compactly as possible. As other systems

are going to be implemented in the future, as described in Chapter 6, this has the added benefit

of allowing for more flexibility with their implementation. The important components are listed

in Table 3.1 along with their relevant dimensions. This can be misleading however as the mounts

for many of these components make them significantly larger.

Returning to the design of the imaging system, the original idea was to place the aperture
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3.2. Imaging System Design

Figure 3.2: A rough mockup of the system. The distances between the cell, aspheric lens,
dichroic and subsequent elements haven’t been labelled as they change depending on the desired
magnification. The optimal aperture diameter D will be determined experimentally. As well, the
focal length of the lens for focusing the MOT beam onto the mirror is dependent on the specific
lens we end up choosing.
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3.3. Theoretical Capabilities

between the aspheric and the dichroic mirror. As the aim was to filter at the Fourier plane, this

would mean it would be 45.5mm away from the flat face of the dichroic because the reference

location for the focal length was inset from the flat face by 5mm. Now, the dichroic was to

be placed at a 45○ relative to the vertical axis, which means that the beam will have to travel

35.92mm from top plane to the exit plane on the right. That leaves only 5mm in which to place

the 1�4 wave plate, beam cube and focusing lens.

The next idea was to place the aperture between the cell and the lens, making only the beams

that are close to the centre of the lens appear on the camera. These beams are subject to less

spherical aberrations and this should result in a better quality of image. The main downside of

this design is that it limits the usable area of the lens for beams coming through the dichroic.

As will be evident in Chapter 6, the wider the diameter of the usable area, the better for our

subsequent additions to this imaging system.

Finally the last design is the one depicted in Figure 3.2, where the aperture is place right

after the dichroic lens. This has the benefit of condensing the system while also leaving the

widest portion of the lens usable for beams passing through the dichroic mirror. Unfortunately,

this means the beam will travel a total of 46.42mm before reaching the aperture. Therefore the

aperture won’t actually be placed at the Fourier plane and can result in some degradation of the

image.

The amount of effect this will have on the image is unknown and this will be one of the tests

that will be done in the characterization of this system. We next need to construct a 3D design

of the imaging system so that parts can be manufactured. This also serves as another test that

all of the geometries in the system will work. This was done in Solidworks using the drawing in

Figure 3.1, and the main contraption is depicted in Figure 3.4.

In this design, the lens will be glued to the mount as the alignment will be vital to the overall

capabilities of the system and we don’t want it to drift over time. In order to ensure the lens is

properly aligned throughout the entire process, a proper method would be to use the lens in an

interferometer as done in [8].

3.3 Theoretical Capabilities

Given the brief review of Fourier optics in Chapter 2, we will henceforth develop a model upon

which we will evaluate the effectiveness of our system. The first thing we must do is establish the

method by which we will experimentally evaluate the imaging system. While using a gas cloud

inside the cell might be the most indicative of how well our system will perform when the actual

experiments are running, it will also make it very difficult to take measurements. In order to

be accurate, we would need to build the system within the experiment and subsequently test its

capabilities, however that would require that no experiments are conducted for a lengthy period

of time. Therefore, we will use a pinhole of sufficiently small diameter to simulate our subject
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3.3. Theoretical Capabilities

Figure 3.3: A depiction of the beam paths in the imaging system. The green beam is the IPG
beam for the dipole trap and it is collimated by the aspheric lens. As it has a wavelength of
1064nm, it passes through the dichroic before being modified by optics not relevant to this work.
The blue beam is the imaging light at 671nm. It subsequently reflects off of the dichroic mirror
and due to its polarization, it also reflects from the beam cube towards the camera. Lastly, the
red beam is the MOT beam which also reflects off of the dichroic and travels through the beam
cube. The focusing lens and subsequent mirror are placed so that the beam is retroreflected.
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3.3. Theoretical Capabilities

Figure 3.4: Solidworks drawing of the main components with the lens mount. The cell is depicted
as being stationed above the entire mount with the lens resting in a round hole. Inside the bracket
part is a Thorlabs H45CN 45○ mount holding the dichroic mirror. This part will be modified by
further milling out the base to have the access to the beam going through the mount. This entire
setup will be mounted onto an L-bracket which will in turn be mounted on a 3-axis translation
stage to provide adjustability along each axis. The lens will most likely be glued to the mount so
as to improve stability.
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matter. This pinhole must then have a size of approximately 2µm in order to be an efficient test

of our system, and we have therefore used one with a diameter of 1µm.

Now, given this information, we can set out to construct our model. We start with the

simplest model where we assume no diffraction occurs. In this case, the 1µm pinhole will be

Mµm in diameter on the camera where M is the magnification of the system. The image will

be a clear disk which will be blurred by any spherical aberrations. In this case, changing the

diameter of the aperture wouldn’t do anything until a certain cutoff size, at which it would start

filtering out the unfocused beams and the image would become clearer.

However, one can easily see that this model is overly simplified as the scale of distance between

the camera and the aperture will be large enough to allow for significant diffraction from the

aperture. If the magnification were sufficiently small one might see this behaviour, however the

pixel size on the camera is 6.8µm×6.8µm and so a magnification of at least 7 would be needed to

take up the majority of 1 pixel. With this magnification we see that

1

f
= 1

di
+ 1

d0

= 1

di
+ M

di
(3.1)

= 1 +M
di

≥ 7

di

↔ di ≥ 7f = 280.0mm (3.2)

and we can expect diffraction to significantly alter our image at these length scales. Hence, we

assume that the original 1µm pinhole image is diffracted by the aperture.

This is then modelled by taking the convolution of the rect function with the impulse response

function which, in this case, is the Airy function. While one may be able to compute some analytic

version of this convolution, it is sufficient, for our purposes, to numerically find the solution, the

result of which is plotted in Figure 3.5 for a variety of diameters of the aperture. As you can see,

when the aperture is wide, the output should look similar to the case where there is no diffraction,

and if the aperture is small we converge to the Airy function.

Now, when we testing the imaging system, two very good measurements are the FWHM and

the intensity of the image. If we change the aperture size and the intensity stays approximately

the same, then we see that we haven’t filtered any light. If we keep changing it and the intensity

suddenly drops, it tells us the diameter at which we start filtering out the rays from spherical

aberrations. Likewise, the FWHM is a measurement of how much diffraction is happening in our

system and subsequently how the resolution changes as we change the aperture size. As such, the

FWHM for the model is plotted in Figure 3.5 and the behaviour agrees with our understanding

of diffraction.
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Figure 3.5: The end image intensity patterns for different aperture diameters based off of the
theoretical model. The difference in intensity is unimportant and used to separate the curves
visually.

Figure 3.6: The FWHM predicted by the theoretical model for varying aperture diameter. A
reference line at 1µm was included to further illustrate how the FWHM converges to 1µm as is
expected.
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Chapter 4

Data and Results

As was detailed in the previous chapter, the bulk of the characterization work was done by

analyzing the trend in the FWHM and intensity of the image for a variety of apertures sizes.

To understand how each element effected the image, this analysis was done for varying stages of

completeness of the system. Before we analyze this data though, we must first touch on how we

determined the magnification of the system.

4.1 Determining the Magnification

For simple experiments, one can use Equation 3.1 to determine the magnification by measuring

the image distance di and the object distance do. However, without a very accurate measuring

technique, this produces results with large uncertainties. To further complicate matters, the

distance at which we measure the focal length from is inset from the surfaces of the lens, and

the CCD chip in the camera is also inset. This would mean one would have to measure these

distances accurately as well before calculating the overall distance, resulting in further errors.

An alternative to this method, would be to use a translation stage attached to the pinhole

so as to translate it across the field of view. Using this method, translating the pinhole by some

known amount results in the image being moved and one can then compare these distances to

extract the magnification.

In order to do this accurately though, one must be able to determine the location of the Airy

pattern within the image. This was done using a variety of scripts discussed in Appendix A. The

centre of the peak was determined using a weighted mean of pixels with sufficiently high intensity

so as to account for any random fluctuations that would otherwise skew the location of the peak.

As in Figure 4.1, the data from the pinhole’s translation and the relative positions of the peak

were then fit to determine the magnification.

These values were then checked approximately using a measuring tape to make sure that they

were realistic and that no error had occurred in the process.

4.2 Characterizing the Effects of Each Component

Given this rigorous method for determining the entanglement, we will now discuss the specifics of

how the data was collected and analyzed before looking at the data for each stage of completeness.
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Figure 4.1: An example of the fitting process for the magnification data. This particular set came
from the final setup.

The first step of the process was building, and aligning, the entire setup. With so few parts the

assembly was trivial, however the alignment carried with it a wide variety of problems.

The most efficient way to build and align everything was centred around moving the pinhole

in the plane parallel to the face of the lens, keeping the distance between the pinhole and the

camera fixed. Then focusing would mean translating the lens along the beam’s axis. Hence, the

first thing was to place the lens camera at some fixed location, at which point the lens was placed

on a translation stage at the appropriate height so that a beam would travel horizontally through

the centre of the lens to the centre of the CCD chip. The pinhole was then placed on a 2D or

3D translation stage so that it could be translated to move it across the imaging plane. Lastly a

laser source is placed behind the pinhole to provide imaging light.

At this point, one must align the system which involves different techniques for different dis-

tances. At a small distance between the pinhole and the camera, the depth of field is significantly

larger so it is easiest to set the distance of the lens to the pinhole via direct measurement with a

ruler, and then translate the pinhole in a systematic way so as to locate it. Then you can focus

it more closely by taking a variety of images at different distances and comparing the resulting

images’ widths and peak intensities. Once the pinhole has been located and the image is focused,

you can add the aperture at the focal length and the basic setup is complete.

If more components are needed, the same process would occur except the other components

are to be added before one locates the pinhole. While they do complicate the system further, if
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one has kinematic mounts then there is yet another way to adjust the image’s location.

Now, for a system with a relatively high magnification, one can take advantage of the fidelity

of the human eye to find the pinhole. Using a relatively bright laser, on the order of 1mW, one

can shine the beam through the system and locate it with one’s eye. Since the power is bright

enough, it is relatively easy to scan the area around where one estimates the pinhole image to be,

and then adjust the system to place the image on the chip. Since the pinhole is so small, it filters

out most of the power and thus the following this method will be safe. The benefit of doing this

is that your eye has a variable focus that we can adjust innately, which makes it very easy to

detect the beam, whereas the camera will have a hard time if the beam is out of focus.

Some alternatives to this method would be to use a significantly higher powered beam, and

then if the image isn’t focused there will still be enough light to give a wide range of focuses

and one can then rely on setting the system up approximately. The consistency of this method

depends on ones ability to approximately align the system based off of measurements, and can

then vary significantly. Another method is to set the system up with a small magnification and

use the appropriate method before slowly moving the camera farther away and adjusting the

focus appropriately.

4.2.1 Setup Stage 1: Pinhole, Lens and Aperture

Arguably the most important component to characterize is the aspheric lens. As it has the most

radical effect on the beams, it is the first aspect we characterize by making a very basic setup

that consists of just the pinhole, light source, aspheric lens, aperture and camera. These are just

placed along one axis and aligned as previously discussed.

Then, the aperture is opened to approximately 50mm, as the designed housing for lens won’t

give more space for the beam to travel through. A large number of pictures are taken at each

aperture size so as to remove fluctuations during the analysis. A small selection of the images

are given in Figure 4.2 to give an idea of the type of image we will analyze most of the time.

Now, our lens has a coating to reduce spherical aberrations for 780nm light and hence we

would imagine it would follow our theoretical model more accurately than the data with 671nm

light. We also took data for this wavelength and compared them both to the theoretical model

in Figure 4.3.

We have plotted a total of 6 theoretical curves for the different wavelengths but also for

varying sizes of pinhole as the pinhole we used has an uncertainty of 0.5µm in the diameter.
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Figure 4.2: A selection of the images from the Stage 1 trials. From left to right they are; 10.04mm,
20.05mm 30.06mm, 39.91mm, and 49.92mm. Due to the small magnification, of approximately
25 times, the pinhole only shows up as a couple of pixels when the setup is focused and it is
quickly lost when the aperture becomes too small.

Figure 4.3: A comparison of the FWHM of the data at varying aperture diameters with what the
theory predicts. This was done for 671nm and 780nm light and the corresponding theory curves.
As there is an uncertainty in the pinhole’s diameter, the curves were plotted for a pinhole size of
1.0, 1.25 and 1.50 µm. The circle markers are for the data along the horizontal axis, while the
square markers are for the data along the vertical axis as shown in Appendix A.

We can see from Figure 4.3 that the data agrees with the model at large apertures but theres is

some disagreement at lower apertures. This is most likely due to the fact we used the Fraunhofer

approximation when modelling the diffraction caused by the aperture. It could also be that

there are other sources of aberration that aren’t accounted for by our model that are caused by

the imperfections in the optics. Regardless, the FWHM of the pinhole image demonstrates our

resolution is on the order of 1-2µm. This is the level or resolution we aimed for and so we wish
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to maintain this as we add subsequent components.

4.2.2 Setup Stage 2: Aperture Placed Before the Lens

Before testing more of the components, we wished to test the validity of the design with the

aperture placed between the pinhole and the lens. Unfortunately, none of the apertures that

were available had a large enough range of diameters while being slim enough to fit between the

pinhole and the lens. To circumvent this problem, a variety of aperture sizes were cut out of a

hard card paper and attached to the lens mount.

While the two data sets in Figure 4.4 seem to flatten out at diameters greater than 20mm,

the aperture before the lens has a significantly worse resolution. Assuming that the subsequent

additions to the system will further reduce the resolution, placing the aperture before the lens

was eliminated as an option for this reason. We can further support this choice by looking at

how the intensity falls off in Figure 4.5.

Figure 4.4: A comparison between the designs with the aperture placed before and after the lens.
The anomalous data point at 5mm is due to an inability to fit the data because the amplitude of
the noise was comparable to the image intensity.

We can see that the intensity falls off slower for the design with the aperture placed before

the lens which means that we don’t filter out as much spherical aberration for the same amount

of aperture change. This leads to having to use a smaller aperture in order to achieve the same

amount of filtering which in turn drops the resolution further. Hence, the design with the aperture

placed after the lens is the best choice and we test the rest of the optics to discern how the final
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imaging system will transform the image from the pinhole.

4.2.3 Setup Stage 3: Addition of the Cell

The last test before the entire setup is to test each side of the cell to make sure it has the same

behaviour on each side. This would also confirm that the cell walls are all the same and are also

sufficiently flat which means that the choice of cell orientation is unimportant. While this isn’t

necessarily required for the imaging system, at least two opposing sides would need to be tested.

This information is summarized in Figures 4.7 and 4.8.

It is important to note that at this point the setup had been changed to have a magnification

of approximately 85 times due to the availability of space. This allowed us to better focus the

image, as well as fit the data more accurately as the image takes up more pixels. To illustrate, a

selection of images are placed in Figure 4.6. The angular symmetry is particularly important as

well as the similarity to an airy pattern.

Figure 4.5: A comparison between the intensity of the designs with the aperture placed before
and after the lens.

It is evident from these plots that all four sides are very uniform in how they transform the

image. There is a slight deviation in Figure 4.7 in the 15-20mm aperture range, however they are

otherwise fairly consisted.
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4.2. Characterizing the Effects of Each Component

Figure 4.6: A selection of the images from the Stage 3 trials. From left to right they are; 11.04mm,
14.06mm 17.02mm, 20.04mm, and 35.07mm. Notice the radial symmetry and the clear ring in
the later images that are indicative of diffraction.

Figure 4.7: A comparison of the effects of the four cell walls on the FWHM of the pinhole image.
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Figure 4.8: A comparison of the effects of the four cell walls on the intensity of the central peak
of the pinhole image.

4.2.4 Setup Stage 4: Final Setup

For the final setup we did two tests. The first was with all the parts assembled and with the

aperture placed at the Fourier plane. This served to address how all of the optical elements

transformed the image and hence it was the main characterization of all the components.

The second test was for the aperture placed 6mm past the Fourier plane as is dictated by

the design and geometry of the setup. This would characterize the final design as a whole and

hence be the main result. Before getting to the data, we note here that the pinhole we had been

using for the previous tests had been damaged and therefore replaced. This could mean that

the new pinhole was actually a different size and result in the tests giving a different resolution.

However, as these tests only set an upper bound on the resolution, the two data sets can still be

used together to understand how the system behaves.
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4.2. Characterizing the Effects of Each Component

Figure 4.9: A comparison of the basic setup, the final setup with the aperture at the Fourier
plane and the final setup with the aperture placed 6mm past the Fourier plane. The disagreement
between the horizontal and vertical data sets for the aperture placed away from the Fourier plane
is indicative the asymmetry in the image.

Returning to the actual data, the results are plotted in Figures 4.9 and 4.10 along with the

original data from the basic setup to compare how the addition of the other optical elements

affected the image quality.

If we first look at Figure 4.10, we see that all three data sets look fairly similar. The apparatus

with the aperture at the Fourier plane (40mm away from the lens) is very close to the basic setup,

though the main difference is that it starts curving closer to 15mm. The setup with the aperture

46mm away has a gentler slope than the other two data sets and it looks as though it might start

curving around 18mm.
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Figure 4.10: A comparison of the basic setup, the final setup with the aperture at the Fourier
plane and the final setup with the aperture placed 6mm past the Fourier plane.

However, if we look at Figure 4.9 we see a very different picture. Arguably the most striking

feature is the difference between the horizontal and vertical values for the data at 46mm away.

This is indicative of some asymmetry in the image that we shall discuss shortly. Putting aside

this asymmetry, we see that the 40mm and 46mm data sets agree well with one another. Their

curvature is much more gradual than the that of the basic setup but it looks like it starts curving

anywhere from 15mm to 20mm.

Overall though, it seems to have a lower resolution, even after one compensates for the differ-

ence in pinholes. While this is unfortunate, the data still shows that the resolution is better than

the 2µm goal. Hence the next major concern is this asymmetry that seems to only be present

in the 46mm data. For this we look at Figure 4.11 which compares some of the images from the

40mm data set with those in the 45mm one.
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Figure 4.11: A selection of the images from the Stage 4 trials. From left to right they are;
10.51mm, 15.98mm 22.0mm, 35.13mm, and 49.92mm. Notice the striking asymmetry from the
bright axis at approximately 30○ to the horizontal.

From both sets of images, it is clear that there is some asymmetry causing a brightening of

an almost horizontal section of the image. It is unclear why it is more dramatic in the 45mm

data set, especially when the aperture is open to almost 50mm. Looking again at Figure 4.6, we

see that this asymmetry wasn’t present, indicating that the source is most likely one of the new

optical elements. Hence we proceed to diagnose this problem.

The first check is to make sure that nothing had happened to the lens that would cause this

asymmetry. An easy test for this is to rotate the lens and see if the asymmetry also rotates. This

was done and the results are shown in Figure 4.12.

Figure 4.12: A comparison of the asymmetry before the lens was rotated by ∼ 90○ and after.
Notice how the main bright asymmetry remains at the same location indicating that the lens is
not the problem.

The bright line remains at approximately the same angle which suggests that it is one of the
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other components that is causing the asymmetry. The next component to test is the wave plate.

Since rotating the wave plate would cause a significant lose in intensity due to the beam cube,

it was instead removed to see if the asymmetry was resolved. This is shown in Figure 4.13 and

again both images are almost identical. Hence the only components left to test are the dichroic

mirror and the beam cube.

Figure 4.13: A comparison of the asymmetry before the wave plate was removed and after.

Due to alignment issues, the rotation of the dichroic changed the image, causing other more

pronounced aberrations. As such, we are left with the dichroic mirror, beam cube or an unknown

source of aberration. Unfortunately, due to the system’s design, it is not trivial to rotate or

remove the beam cube and hence this final test wasn’t conducted as a part of this thesis. It will

be much more simple to resolve while actually installing the apparatus in the main system and

will be done at that time.
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Chapter 5

Entanglement Theory

One of the major motivations for building this high resolution imaging system is that it would

allow for the study of entanglement through density correlations, the details of which are in

Section 5.2. Some recent papers [1, 2] have examined the entanglement, in momentum space, of a

degenerate quantum gas which would be within our realm of possible tests. This is of particular

interest as ultra-cold gases provide a relatively noise free environment within which one can

examine many-body entanglement and it would be beneficial to develop those techniques further.

To this end, the imaging apparatus was designed with these measurements in mind and therefore

it is appropriate to discuss these ideas and how one might measure them in a similar apparatus.

5.1 The Density Matrix and the Entanglement Entropy of a

System

Before addressing entanglement directly, it helps to review the density matrix formalism and

how entanglement is expressed in this form. Hence, to start we first examine Bell states as an

introductory example.

One of the fundamental two qubit states in quantum computation is given by

�ψ� = �00� + �11�√
2

. (5.1)

Now, given an unentangled two qubit state, say �Φ�, one would be able to decompose it into a

product of two qubits, i.e. there exists some single qubit states �φ1� and �φ2� such that �Φ� =
�φ1� �φ1�. It is in this way that we define an entangled state. We say a state �Φ� is entangled if

there are no such states �φ1� and �φ2� such that �Φ� is their product.
Alternatively, instead of building quantum mechanics using state vectors, one can use the

density matrix instead. It provides a much nicer way of expressing individual subsystems of a

composite system which is helpful when dealing with entanglement. As such, when discussing a

quantum system whose state isn’t completely known, we describe it by the possible states �Φi�,
which it could occupy, and their respective probabilities pi. In this language the set {pi, �Φi�} is
called an ensemble of pure states and the corresponding density operator is defined as

ρ =�
i

pi �Φi� �Φi� (5.2)
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with an analogous density matrix

ρjk =�
i

pi �ej �Φi� �Φi� ek� (5.3)

for some basis {�ei�}.
In this way, we can describe the evolution of the density operator by the unitary operator Û

by

ρ
Û�→ ÛρÛ

†
. (5.4)

The density operator has a rather large number of nice properties like

i) tr(ρ) = 1,
ii) �ψ�ρ �ψ� >= 0.

It is important to note that this means that the density operator permits a spectral decomposition.

There are a variety of other useful properties that we will skip, however one will find a much

more thorough description in Chuang [9]. Turning now to how the density operator describes

subsystems of some composite quantum system, we will have to discuss the partial trace and the

reduced density operator.

Suppose now, there are two physical systems labelled A and B with a corresponding density

matrix ρ
AB. If now we wish to focus solely on subsystem A, we define the reduced density matrix

for system A as

ρ
A = trB(ρAB) (5.5)

where the partial trace is defined by

trB(�a� �a′�⊗ �b� �b′�) = �a� �a′� tr(�b� �b′�)
= �a� �a′� �b′ �b� . (5.6)

Therefore, if ρAB = ρA ⊗ ρ
B, then our notion of the reduced density matrix is consistent since

ρ
A = trB(ρAB) = trB(ρA ⊗ ρ

B) = ρAtr(ρB) = ρA. (5.7)

Before addressing entanglement directly, we will discuss the entropy of a quantum state.

Following the Shannon entropy from information theory, we have the von Neumann entropy S(ρ)
defined as

S(ρ) = −tr(ρ log2 ρ) (5.8)

where we define 0 log2(0) = 0. For a pure state, we have that ρ = �ψ� �ψ� for some state �ψ�
and hence the von Neumann entropy will be zero. On the other hand, an entangled state will

have a non-zero entropy. In fact, a maximally entangled system will have ρ = I�d where d is the
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dimension of the density matrix. It is hence by the definition of the von Neumann entropy, or

entanglement entropy as it is sometimes called, that we define the entanglement of a system. A

system can have an entanglement entropy in the range of 0 to log2 d and it is zero if and only if

it is unentangled or a pure state.

We can also look at the entanglement entropy of some subsystem using the reduced density

matrix, whereby

SA = −tr(ρA log2 ρA) (5.9)

provides a measure of the entanglement between A and the rest of the system.

5.2 Motivating Theory and Measurement Scheme

As has been previously mentioned, this system was designed in hopes of performing some mo-

mentum space correlation measurements. In particular, it was theorized that the entanglement

entropy in momentum space is zero in the ground state before diverging in the continuum limit.

Furthermore, the density matrix can be explicitly calculated and hence, by measuring the corre-

lations between different momentum space modes, one can easily compare the theory to experi-

mental results.

Figure 5.1: (a) Due to momentum conservation, if a stationary molecule decays into two atoms,
they must have equal and opposite momenta. Therefore, they would be found on opposite sides
of the atomic cloud. (b) An absorption image after the dissociation of weakly bound molecules.
Notice the clear ring demonstrating the momentum correlations. The small, dark dot is caused
by the molecules that didn’t dissociate and therefore remain at the centre, blocking light. Figure
from [6].

In order to conduct these measurements, we will take a time-of-flight (ToF) measurement.

This involves releasing a trapped gas and imaging it after it has expanded. If it has expanded to

be much larger than the original cloud of particles, we say that the spatial density distribution

approximates the momentum distribution.

To illustrate this idea, let us begin with an atomic cloud in some initial state �Ψ(t = 0)� with
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a width of L. Once it is released it will evolve according to the unitary operator

Û(t) = exp�−it� dk

2π
ω(k)n̂(k)� (5.10)

and subsequently we look at the time evolution of the field operators ψ̂(x), ψ̂†(x).
We then see that

ψ̂
†(x, t) = Û †(t)ψ̂†(x,0)Û(t) (5.11)

= �
L
2

−L
2

dx̃ ψ̂
†(x̃,0) �� dk

2π
e
i[k(x̃−x)−ω(k)t]� (5.12)

where we then integrate the piece in the square brackets explicitly. Note that this integration

only works when we give the time a small imaginary part. This gives us

I(x, t) = � dk

2π
e
i[kx−ω(k)t] ≈� m

2πit�hei
mx2

2t�h (5.13)

We can then ask, how long does it take for the separation between the initial momentum

states to become larger than the initial size L of the system? To answer this we look at the

commutator

[φ̂k, ψ̂
†(x, t)] = �

L
2

−L
2

dx̃e
−ikx̃I(x̃ − x, t) = Ĩk(x, t) (5.14)

After some manipulation, we get

Ĩk(x, t) ≈
�

m

2πit�h exp�imx
2

2t�h �
sin �mxL

2t�h ��mx
2t�h� (5.15)

where we have assumed that x >> L
4
which means the wave packet has spread a large amount

compared to the cloud’s initial size L. Following that, we can identify that this describes a

function of width W = 2πt�h
mL but our initial approximation requires that W >> L

4
which means

that the expansion time is tTOF >> mL2

8π�h . For a trapped Li cloud of size 20µm, we find that

tTOF >> 1.5ms.

Now, ff this is not the case, we have a new function with width W ≈ L
2
. Regardless, we see that

the each initial momentum, �hk = 2π�hl
L for some integer l, is associated with a density distribution

centred at x = �hktm with width W . Thus each initial momentum is well resolved when W << 2π�ht
mL .

This happens at a time when the width of the initial cloud has a negligible effect on the width

of the cloud after expansion, which we find to be t ≈ mL2

2π�h which is on the order of 1.5ms for 6Li.

Thus, if we let the cloud expand for some time longer than this, we will be able to fully resolve

the momentum distribution.

Since we can then relate the density distribution with the momentum distribution, the inten-

sity of a pixel on the camera will translate to the number of particles at with that momentum.

36



5.2. Motivating Theory and Measurement Scheme

Then, given a particular momentum mode, one can ask what is the likelihood of finding a particle

at some other momentum state. In this way, we can construct these correlations between mo-

mentum modes and then compare with theory. These types of experiments have been previously

carried out and this results in images like the one shown in Figure 5.1.
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Chapter 6

Future Considerations

Considering the imaging system has a sufficiently high resolution, the next step is to address this

asymmetry. Most likely, it is due to some imperfections in the dichroic or beam cube and should

therefore be relatively easy to correct. Once this is completed, it would be useful to characterize

the imaging system’s field of view and how the image quality changes over the surface of the lens.

This might be more easily tested once the imaging system is installed as one could conduct an

experiment similar Jin’s [6]. This would be helpful because the image is very well understood

and it would utilize the whole lens. Hence, any aberrations in the image would be evident. As

such, once the source of the asymmetry is found, the next step might be to install the imaging

system in the main apparatus and conduct the such an experiment.

Also mentioned previously was the desire to implement a pinning lattice for fluorescence

imaging. While fluorescence imaging can’t be used for the entanglement measurements we have

mentioned, due to the nature of ToF measurements, it is the ideal form of imaging for many other

experiments. This wouldn’t require much extra testing and would allow for a wide range of new

experiments.

6.1 Dilating Lattice

An interesting extension of this lattice technology is, what we have called, the dilating lattice.

It would be a great compliment to a pinning lattice and it would serve to further upgrade our

imaging system in situations where you can hold your gas in a lattice. What it will do, instead of

increasing the resolution of the imaging system, is increase the spacing between the subjects of

interest. This leads to a decrease in the required resolution and will therefore allow our imaging

apparatus to perform comparably to many other quantum gas microscopes.

While it is unfortunate that the dilating lattice can only be used in certain circumstances,

many quantum gas microscopes use similar scheme to boost the resolution of the system. These

can range from a solid immersion lens [5], which require the gas to be confined to a plane close

to the lens, to a complicated set of lenses [10, 11], which are costly and very difficult to align and

maintain.

Now, before we discuss the design, it is important to note a couple of drawbacks to this

method. While it will cost significantly less than many other quantum gas microscopes, it won’t

have the ability to address single sites in situ. While this won’t necessarily be a problem for
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6.1. Dilating Lattice

many of the experiments we aim to conduct, it nevertheless presents a bound on what one might

explore with this apparatus. Similarly, it also requires that the particles be held in this lattice

which may not be ideal for some experiments. In this case, one would have to solely rely on the

resolution from the imaging apparatus. That said, the system will provide many benefits but we

will first examine the basic concept behind the lattice and what it can be used for.

Figure 6.1: A rough sketch of the dilating lattice apparatus. The middle beam cube can be
translated along the vertical axis and it generates two parallel beams of varying separation.
The stabilization path is essentially an interferometer which will allow for the adjustment of the
relative path lengths to stabilize the lattice.

The apparatus is depicted in Figure 6.1 and it takes a single input beam and transforms it into

two, parallel output beams. The separation of these output beams is dictated by the location at

which the input beam reflects from the beam cube. This location can be changed by translating
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the beam cube along the vertical axis, which means the beam separation is easily changed in a

mechanical manner. This is important because all the rays will focus at some distance f past the

lens, meaning the shift in separation changes the angle φ at which the rays are focused. These

beams then cross at the focal length, causing interference and hence a lattice potential.

The lattice spacing is given by

a = λ

2 sin(φ) (6.1)

and so, by changing the separation of the beams one can change the lattice spacing. What this

means is one can load the dilating lattice when it is expanded, contract it so that tunnelling

between lattice sites can occur, and then expand it again to image each site. The bounds on the

sizes of the lattice are

amin = λ

2NA
(6.2)

amax = λfobj

2q
(6.3)

where NA is the numerical aperture of the lens, and q is the size of the small mirror for the

stabilization path. Since the main object will be the aspheric used in the imaging apparatus,

these bounds are amin ∼ λ and amax ∼ 5λ using a q ≈ 5mm. Hence, if one uses 522nm light,

this would result in a compressed lattice space of approximately 0.5µm and an expanded lattice

spacing of approximately 2.5µm. This can be resolved using the imaging apparatus.

This would be a viable method for increasing the resolution of the imaging apparatus. Another

application is for trap loading, whereby one loads the gas cloud into the expanded dilating lattice,

contracts the lattice and then transfers the particles into a dipole trap. Currently, when loading

the dipole trap with a 100µm cloud, one will typically fill a large number of ‘pancake’ potentials as

depicted in Figure 6.2. If, instead, one were to load it into the dilating lattice, one could contract

the lattice and subsequently load the dipole trap. This will cause fewer ’pancake’ potentials to

be filled more densely which is useful for experiments.
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6.1. Dilating Lattice

Figure 6.2: A cartoon of both the normal loading of the dipole trap, and the loading via the
dilating lattice. The gas cloud in blue can be either loaded directly into the dipole trap, filling a
large number of ‘pancake’ potentials or it can first be loaded into a dilating lattice and contracted
to fill a small number of ‘pancake’ potentials more densely.

Due to the desire to use a wavelength of light smaller than the imaging light’s 671nm, one

will need to take into consideration the possibility of chromatic aberration in the system. This

can be tested by measuring the distance at which the camera must be placed for the image to

be focused for different wavelengths of light. As this is a simple test, it will be conducted before

any more work is done on the dilating lattice to make sure the current aspheric lens is suitable.

41



Chapter 7

Conclusions

A vertical imaging system was designed to have a resolution of at least 2µm and properly interface

with the current experimental apparatus. The system was subsequently built in stages which

allowed for the effect of each component to be characterized. This characterization was done

according to the FWHM and intensity of the diffraction pattern caused by a 1µm pinhole. The

basic setup was compared to simple theory and was found to have unaccounted for aberrations,

although the two converged as the aperture became large. It was shown that placing the aperture

after the lens provided a better resolution for the same aperture size when compared with the

lens being placed before the aperture. Placing the lens away from the Fourier plane was then

shown to enhance some asymmetry that was most likely created by the beam cube.

The criteria for relating the spatial density distribution, from a ToF measurement, with the

momentum space distribution of an ultra-cold gas was investigated. This was done in anticipation

of using the new imaging system to experimentally test predictions concerning the entanglement

entropy of a degenerate fermi gas.

Lastly, the preliminary design for a dilating lattice was discussed as an aid for a pinning lattice

and fluorescence imaging, as well as a independent device for manipulating a trapped gas. This

was done assuming the same aspheric lens would be used for both the imaging system and the

dilating lattice, and hence the method for testing for chromatic aberration was outlined.
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Appendix A

MATLAB Scripts

Here are all the MATLAB scripts used to analyze data and do the theoretical calculations.

A.1 preferences.m

This function is just a basic script to aid main.m. It is a GUI to get the data file’s name.

function [date data_name]=preferences(save_file,base_dir)

choice=2; save_choice=2;

[date data_name]=img_saves(save_file);

if strcmp(date,’’)==0 && strcmp(data_name,’’)==0

choice=menu(sprintf(’Would you like to use\nDate: %s\nData File Name: %s’,...

date,data_name),’Yes’,’No’);

end

if choice==2

d = dir(base_dir);

str = {d.name};

[s,v] = listdlg(’PromptString’,’Select a file:’,’SelectionMode’,...

’single’,’ListString’,str);

date=str{s};

d = dir(strcat(base_dir,date,’/’));

str = {d.name};

[s,v] = listdlg(’PromptString’,’Select a file:’,’SelectionMode’,...

’single’,’ListString’,str);

data_name=str{s};

save_choice=menu(’Save choice?’,’Yes’,’No’);

end

if save_choice==1

savefile=fopen(save_file,’w’);

fprintf(savefile,sprintf(’#Date Data_Name\n%s %s’,...

date,data_name));

fclose(savefile);

end

44



A.2. img saves.m

A.2 img saves.m

A helper function for preferences to get the saved preferences.

function [date data_name]=img_saves(save_file)

savefile=fopen(save_file,’r’);

date=’’;

data_name=’’;

if savefile~=-1

while 1

tline=fgetl(savefile);

if ~ischar(tline), break, end

if ismember(’#’,tline)

msg=regexprep(tline,’#’,’’);

else

[date data_name]=strtok(tline);

data_name=strtrim(data_name);

end

end

str_date=’There was no previously stored date’;

if strcmp(date,’’)==0

str_date=strcat(’The last date was:’,’ ’,date);

end

str_data_name=’There was no previously stored data file name’;

if strcmp(data_name,’’)==0

str_data_name=strcat(’The last data file name was:’,’ ’,data_name);

end

end

A.3 img info.m

This is another aid script to get the aperture from the filename.

function [aperture]=img_info(name)

decimal= strfind(name, ’_’);

dash=strfind(name,’-’);

if isempty(dash)

dash=decimal(end);

decimal=decimal(1);

end
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aperture=strcat(name(1:decimal-1),’.’,name(decimal+1:dash-1));

A.4 get images.m

This script gets all the images in a data set and sorts them into the actual data and the control,

background images.

function [images_sorted background]=get_images(data_loc,image_type)

images_w_background = dir(strcat(data_loc,’*.’,image_type));

images=cellfun(@background_be_gone,{images_w_background.name},...

’UniformOutput’,0);

images=images(~cellfun(’isempty’,images));

ref=cellfun(@img_info,images,’UniformOutput’,0);

[unique_strings, ~, string_map]=unique(ref);

most_common_string=unique_strings(mode(string_map));

frequency=sum(strcmp(ref,most_common_string));

images_sorted=cell(frequency,length(unique(ref)));

ref=unique(ref);

for i=1:length(images)

aperture=img_info(images{i});

index=find(strcmp(ref,aperture));

j=1;

while isempty(images_sorted{j,index})==0;

j=j+1;

end

images_sorted{j,index}=images{i};

end

background=cellfun(@images_be_gone,{images_w_background.name},’UniformOutput’,0);

background=background(~cellfun(’isempty’,background));

A.5 images be gone.m

A simple helper function for get images.m to remove all the data images from an array of images

to leave only the background images.

function name_out=images_be_gone(name_in)

if strfind(name_in,’background’)

name_out=name_in;

else
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name_out=[];

end

A.6 background be gone.m

Like images be gone.m, this gets rid of the background images so that only the data images are

left.

function name_out=background_be_gone(name_in)

if strfind(name_in,’background’)

name_out=[];

else

name_out=name_in;

end

A.7 img load.m

This loads all of the images with get images.m, subtracts the average of the background images,

and then averages them.

function all_images=img_load(data_dir,date, data_file_name,image_type)

data_loc=strcat(data_dir,date,’/’,data_file_name,’/Data/’);

background_image=0;

[images background]=get_images(data_loc,image_type);

[number_per_trial number_of_apertures]=size(images);

all_images=cell(number_of_apertures,number_per_trial+1);

for i=1:length(background)

background_image_string=strcat(data_loc,background{i});

if strcmp(image_type,’png’)

background_image_temp=double(imread(background_image_string));

else

background_image_temp=double(fitsread(background_image_string));

end

background_image=background_image+background_image_temp;

end

background_image=uint16(background_image/length(background));

for i=1:number_of_apertures
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A.8. img average.m

for j=1:number_per_trial

if isempty(images{j,i})

break

end

all_images{i,1}=img_info(images{j,i});

image_string=strcat(data_loc,images{j,i});

if strcmp(image_type,’png’)

image_raw_temp=imread(image_string)-background_image;

else

image_raw_temp=uint16(fitsread(image_string))-background_image;

end

all_images{i,j+1}=image_raw_temp;

end

end

A.8 img average.m

This takes all the images, after the background has been subtracted, and filters out the images

without a high enough intensity when compared to the highest intensity image. Then it averages

all the images based off of their aperture so that the output gives one image per aperture size.

function average_images=img_average(all_images,threshold)

[number_of_apertures number_of_trials]=size(all_images);

average_images=[all_images(1:end,1) num2cell(zeros(number_of_apertures,1))];

for i=1:number_of_apertures

temp1=all_images(i,2:end);

temp=temp1(~cellfun(’isempty’,temp1));

filtered_images=image_filter(temp,threshold);

for j=1:length(filtered_images)

average_images{i,2}=average_images{i,2}+double(filtered_images{j});

end

average_images{i,2}=average_images{i,2}/length(filtered_images);

end

A.9 image filter.m

This is the helper function that actually filters the images based off of how intense they are

relative to the most intense image of that aperture size.

function filtered_images=image_filter(images,threshold)
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A.10. filter supplemental.m

[average maximum]=cellfun(@filter_supplemental,images,’UniformOutput’,0);

filtered_images=images(cell2mat(maximum)>=threshold*max(cell2mat(maximum)));

A.10 filter supplemental.m

This is another helper function for cellfun(.).

function [average maximum]=filter_supplemental(image)

average=mean(image(:));

maximum=max(image(:));

A.11 max loc.m

Given an image and some threshold fraction, this script finds, what should be, the maximum.

It uses a weighted mean to try to find the peak. This way it isn’t as susceptible to random

fluctuations in intensity.

function [maxloc_x maxloc_y]=max_loc(image,threshold_frac)

threshold_frac=0.9;

[width height]=size(image);

lib=reshape(1:(width*height),width,height);

threshold=threshold_frac*max(image(:));

loc_temp=lib(image>=threshold);

[maxloc_y maxloc_x] = ind2sub(size(image), loc_temp);

maxloc_y=round(wmean(maxloc_y,image(loc_temp).^3));

maxloc_x=round(wmean(maxloc_x,image(loc_temp).^3));

if isnan(maxloc_y)

maxloc_y=width/2;

end

if isnan(maxloc_x)

maxloc_x=width/2;

end

A.12 image fit.m

This function looks at two cross sections of the image, one in the vertical direction the the peak

and one in the horizontal direction. It then fits the data along these directions. An example of

what this would look like is given in Figure A.1.
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A.12. image fit.m

Figure A.1: An example of how the data is fit. The green point in the top two images is what
max loc.m has determined to be the maximum. The two lines in the top to images are the vertical
and horizontal data sets that it fits. Those data sets, and their fits are plotted in the bottom to
subfigures.This image is from Stage 3 and notice the data along the vertical has some spherical
aberrations that are indicated by the elevated minima.

function output=image_fit(image,maxloc_x,maxloc_y)

height_0=1000.0;

width_0=10.0;

I_hor=image(maxloc_y,:);

I_vert=image(:,maxloc_x)’;

f=@(p,x) p(1)*abs((1/(1-p(2)^2)^2)*((2./((x-p(3))/p(4))).^2). ...

*(besselj(1,(x-p(3))/p(4))-p(2)*besselj(1,p(2)*(x-p(3))/p(4))).^2)+p(5);

x_hor=1:length(I_hor);

p0_hor=[max(I_hor) 0 maxloc_x width_0 min(I_hor)];

fitf_hor = @(p) sum(((I_hor-f(p,x_hor)).^2));
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A.13. theory.m

p_hor=fminsearch(fitf_hor,p0_hor);

x_vert=1:length(I_vert);

p0_vert=[max(I_vert) 0 maxloc_y width_0 min(I_vert)];

fitf_vert = @(p) sum(((I_vert-f(p,x_vert)).^2));

p_vert=fminsearch(fitf_vert,p0_vert);

output=[{I_hor},{I_vert},{p_hor},{p_vert}];

A.13 theory.m

This is the function that is responsible for the simple model in Section 3.3.

function [D x output FWHM]=theory(w,l,res)

D=linspace(1,50,30);

f=40*10^-3;

x=linspace(-10^-5,10^-5,res);

g=@(x) p(1)*(besselj(1,p(2)*abs(x-p(3)))./abs(x-p(3))).^2 -p(4);

x=x(x~=0);

y=linspace(-w/2.,w/2.,res);

y2=repmat(y,length(x),1);

x2=repmat(x’,1,res);

temp=x2+y2;

[a b]=size(temp);

output=zeros(length(D),a);

p=cell(length(D),1);

for j=1:length(D)

p{j}=[(D(j)/4)^2,2*pi*(10^-3)*D(j)/(l*f),0,0];

airy=airy_func(p{j},temp);

for i=1:a

output(j,i)=trapz(temp(i,:),airy(i,:));

end

end

FWHM=zeros(length(D),1);
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A.14. airy conv.m

for i=1:length(D)

FWHM(i)=fwhm(x,output(i,:));

end

[s, mess, messid] = mkdir(’../Data/Theory’, sprintf(’%g_%g’,w*10^6,l*10^9));

x_file_name=sprintf(’/Users/user/Documents/School/Physics_Honours_Thesis/Data/

Theory/%g_%g/x_file.txt’,w*10^6,l*10^9);

D_file_name=sprintf(’/Users/user/Documents/School/Physics_Honours_Thesis/Data/

Theory/%g_%g/D_file.txt’,w*10^6,l*10^9);

output_file_name=sprintf(’/Users/user/Documents/School/Physics_Honours_Thesis/Data/

Theory/%g_%g/output_file.txt’,w*10^6,l*10^9);

FWHM_file_name=sprintf(’/Users/user/Documents/School/Physics_Honours_Thesis/Data/

Theory/%g_%g/FWHM_file.txt’,w*10^6,l*10^9);

csvwrite(D_file_name,D);

csvwrite(FWHM_file_name,FWHM);

csvwrite(x_file_name,x);

csvwrite(output_file_name,output);

A.14 airy conv.m

This is a helper function to take the convolution of an Airy function and a rect function.

function [value]=airy_conv(x_0,p,w)

f=@(p,x) p(1)*(besselj(1,p(2)*abs(x-p(3)))./(p(2)*abs(x-p(3)))).^2 -p(4);

x=linspace(x_0-(w/2.),x_0+(w/2.),10000);

x=x(x~=p(3));

airy=f(p,x);

value=trapz(x,airy);

A.15 magnification main.m

This is the main script for determining the magnification of a data set. It calls a variety of helper

functions to load the correct images and then it fits them and determines the relationship between

pinhole and image translations. This is done by linearly fitting the data as is depicted in Figure

4.1.

clc

clf
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A.15. magnification main.m

clear all

close all

f=@(p,x) p(1)*abs((1/(1-p(2)^2)^2)*((2./((x-p(3))/p(4))).^2). ...

*(besselj(1,(x-p(3))/p(4))-p(2)*besselj(1,p(2)*(x-p(3))/p(4))).^2)+p(5);

Image_Distances_x=[];

Image_Distances_y=[];

save_file=[’/Users/user/Documents/School/Physics_Honours_Thesis/Scripts/’...

’Script_Files/Magnification_Fit_Preference_Saves.txt’];

data_dir=’/Users/user/Documents/School/Physics_Honours_Thesis/Data/’;

[date data_file_name]=preferences(save_file,data_dir);

plots_loc=strcat(data_dir,date,’/’,data_file_name,’/Plots/’);

image_types={’png’,’fit’};

image_type=image_types{menu(’Image type?’,image_types)};

all_images=img_load(data_dir,date,data_file_name,image_type);

average_images=img_average(all_images,0.95);

temp=size(average_images);

number_of_distances=temp(1);

maxloc=[{’Distance’, ’Max_X_Coordinate’,’Max_Y_Coordinate’};

average_images(1:end,1),num2cell(zeros(number_of_distances,2))];

for i=1:number_of_distances

[maxloc_x maxloc_y]=max_loc(double(average_images{i,2}),0.9);

maxloc{i+1,2}=maxloc_x;

maxloc{i+1,3}=maxloc_y;

end

I_hor=[average_images(1:end,1) num2cell(zeros(number_of_distances,1))];

I_vert=[average_images(1:end,1) num2cell(zeros(number_of_distances,1))];

p_hor=[average_images(1:end,1) num2cell(zeros(number_of_distances,1))];

p_vert=[average_images(1:end,1) num2cell(zeros(number_of_distances,1))];

for i=1:number_of_distances

temp=image_fit(double(average_images{i,2}),maxloc{i+1,2},maxloc{i+1,3});
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A.15. magnification main.m

I_hor{i,2}=temp{1};

I_vert{i,2}=temp{2};

p_hor{i,2}=temp{3};

p_vert{i,2}=temp{4};

end

for i=1:number_of_distances

h=figure();

subplot(2,2,1)

imshow(uint16(average_images{i,2}))

hold on

title(sprintf(’Distance of %0.5g’,str2double(average_images{i,1})));

plot(maxloc{i+1,2},maxloc{i+1,3},’g.’)

hold off

subplot(2,2,2)

imshow(uint16(average_images{i,2}))

hold on

title(’Zoomed in Image’);

plot(maxloc{i+1,2},maxloc{i+1,3},’g.’)

axis([maxloc{i+1,2}-21,maxloc{i+1,2}+21,maxloc{i+1,3}-15,maxloc{i+1,3}+15])

hold off

x_hor=1:length(I_hor{i,2});

x_vert=1:length(I_vert{i,2});

subplot(2,2,3)

hold on

plot(x_hor,I_hor{i,2})

plot(x_hor,f(p_hor{i,2:end},x_hor),’r’)

title(’Fit Along the Horizontal Line’)

hold off

subplot(2,2,4)

hold on

plot(x_vert,I_vert{i,2})

plot(x_vert,f(p_vert{i,2:end},x_vert),’r’)

plot(x_vert,f([max(I_vert{i,2}) 0 maxloc{i+1,3} ...
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A.15. magnification main.m

15 min(I_vert{i,2})],x_vert),’r’)

title(’Fit Along the Vertical Line’)

hold off

Intensity_hor{i,2}=p_hor{i,2}(1)+p_hor{i,2}(5);

Intensity_vert{i,2}=p_vert{i,2}(1)+p_vert{i,2}(5);

temp_hor=abs(0.5*p_hor{i,2}(1)+p_hor{i,2}(5)-f(p_hor{i,2},x_hor));

FWHM_hor{i,2}=2*abs(p_hor{i,2}(3)-x_hor(temp_hor==min(temp_hor)));

temp_vert=abs(0.5*p_vert{i,2}(1)+p_vert{i,2}(5)-f(p_vert{i,2},x_vert));

FWHM_vert{i,2}=2*abs(p_vert{i,2}(3)-x_vert(temp_vert==min(temp_vert)));

Image_Distances_x=[p_hor{i,2}(3) Image_Distances_x];

Image_Distances_y=[p_vert{i,2}(3) Image_Distances_y];

end

Distances=cell2mat(cellfun(@str2num,maxloc(2:end,1),’UniformOutput’,0));

%tick_convert=1.0/50; %Conversions for measurements on different translations stages.

tick_convert=0.0011;

pixel_convert=6.8*0.001; %i.e. 1 pixel is 6.8*0.001 mm

d=tick_convert*Distances’;

x=pixel_convert*Image_Distances_x;

y=pixel_convert*Image_Distances_y;

linear_f=@(p,x) p(1)*x+p(2);

linear_fitf_x=@(p) sum((x-linear_f(p,d)).^2);

linear_fitf_y=@(p) sum((y-linear_f(p,d)).^2);

p0_x=[mean(x)/mean(d),100];

p0_y=[mean(y)/mean(d),100];

p_x=fminsearch(linear_fitf_x,p0_x);

p_y=fminsearch(linear_fitf_y,p0_y);

t=linspace(min(d),max(d),1000);

h=figure();

hold on

plot(d,x,’r+’)

plot(t,linear_f(p_x,t))

hold off
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A.16. main.m

h=figure();

hold on

plot(d,y,’r+’)

plot(t,linear_f(p_y,t))

hold off

A.16 main.m

This is the main script for determining the FWHM and intensity trends in each data set. It saves

this data so that it can be plotted or analyzed further at some later point.

clc

clf

clear all

close all

f=@(p,x) p(1)*abs((1/(1-p(2)^2)^2)*((2./((x-p(3))/p(4))).^2). ...

*(besselj(1,(x-p(3))/p(4))-p(2)*besselj(1,p(2)*(x-p(3))/p(4))).^2)+p(5);

save_file=[’/Users/user/Documents/School/Physics_Honours_Thesis/Scripts/’,...

’Script_Files/Diffraction_Fit_Preference_Saves.txt’];

data_dir=’/Users/user/Documents/School/Physics_Honours_Thesis/Data/’;

[date data_file_name]=preferences(save_file,data_dir);

plots_loc=strcat(data_dir,date,’/’,data_file_name,’/Plots/’);

image_types={’png’,’fit’};

image_type=image_types{menu(’Image type?’,image_types)};

all_images=img_load(data_dir,date,data_file_name,image_type);

average_images=img_average(all_images,0.95);

temp=size(average_images);

number_of_apertures=temp(1);

maxloc=[{’Aperture’, ’Max_X_Coordinate’,’Max_Y_Coordinate’};

average_images(1:end,1),num2cell(zeros(number_of_apertures,2))];

for i=1:number_of_apertures
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A.16. main.m

[maxloc_x maxloc_y]=max_loc(double(average_images{i,2}),0.9);

maxloc{i+1,2}=maxloc_x;

maxloc{i+1,3}=maxloc_y;

end

I_hor=[average_images(1:end,1) num2cell(zeros(number_of_apertures,1))];

I_vert=[average_images(1:end,1) num2cell(zeros(number_of_apertures,1))];

p_hor=[average_images(1:end,1) num2cell(zeros(number_of_apertures,1))];

p_vert=[average_images(1:end,1) num2cell(zeros(number_of_apertures,1))];

for i=1:number_of_apertures

temp=image_fit(double(average_images{i,2}),maxloc{i+1,2},maxloc{i+1,3});

I_hor{i,2}=temp{1};

I_vert{i,2}=temp{2};

p_hor{i,2}=temp{3};

p_vert{i,2}=temp{4};

end

Intensity_hor=[average_images(1:end,1) num2cell(zeros(number_of_apertures,1))];

Intensity_vert=[average_images(1:end,1) num2cell(zeros(number_of_apertures,1))];

FWHM_hor=[average_images(1:end,1) num2cell(zeros(number_of_apertures,1))];

FWHM_vert=[average_images(1:end,1) num2cell(zeros(number_of_apertures,1))];

for i=1:number_of_apertures

h=figure();

subplot(2,2,1)

imshow(uint16(average_images{i,2}))

hold on

title(sprintf(’Aperture Size of %0.5g’,str2double(average_images{i,1})));

plot(maxloc{i+1,2},maxloc{i+1,3},’g.’)

hold off

subplot(2,2,2)

imshow(uint16(average_images{i,2}))

hold on

title(’Zoomed in Image’);

plot(maxloc{i+1,2},maxloc{i+1,3},’g.’)

axis([maxloc{i+1,2}-21,maxloc{i+1,2}+21,maxloc{i+1,3}-15,maxloc{i+1,3}+15])

57



A.16. main.m

hold off

x_hor=1:length(I_hor{i,2});

x_vert=1:length(I_vert{i,2});

subplot(2,2,3)

hold on

plot(x_hor,I_hor{i,2})

plot(x_hor,f(p_hor{i,2:end},x_hor),’r’)

title(’Fit Along the Horizontal Line’)

hold off

subplot(2,2,4)

hold on

plot(x_vert,I_vert{i,2})

plot(x_vert,f(p_vert{i,2:end},x_vert),’r’)

title(’Fit Along the Vertical Line’)

hold off

Intensity_hor{i,2}=p_hor{i,2}(1)+p_hor{i,2}(5);

Intensity_vert{i,2}=p_vert{i,2}(1)+p_vert{i,2}(5);

temp_hor=abs(0.5*p_hor{i,2}(1)+p_hor{i,2}(5)-f(p_hor{i,2},x_hor));

FWHM_hor{i,2}=2*abs(p_hor{i,2}(3)-x_hor(temp_hor==min(temp_hor)));

temp_vert=abs(0.5*p_vert{i,2}(1)+p_vert{i,2}(5)-f(p_vert{i,2},x_vert));

FWHM_vert{i,2}=2*abs(p_vert{i,2}(3)-x_vert(temp_vert==min(temp_vert)));

saveas(h,strcat(plots_loc,average_images{i,1},’_figure’,’.png’));

end

Apertures=cell2mat(cellfun(@str2num,Intensity_hor(:,1),’UniformOutput’,0));

Intensities_hor=cell2mat(Intensity_hor(:,2));

Intensities_vert=cell2mat(Intensity_vert(:,2));

FWHM_hor_temp=cell2mat(FWHM_hor(:,2));

FWHM_vert_temp=cell2mat(FWHM_vert(:,2));

[Apertures_sorted, SortIndex] = sort(Apertures);
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A.16. main.m

Intensities_hor_sorted=Intensities_hor(SortIndex);

Intensities_vert_sorted=Intensities_vert(SortIndex);

FWHM_hor_sorted=FWHM_hor_temp(SortIndex);

FWHM_vert_sorted=FWHM_vert_temp(SortIndex);

figure()

semilogy(Apertures_sorted,Intensities_hor_sorted,’.’)

hold on

semilogy(Apertures_sorted,Intensities_hor_sorted)

semilogy(Apertures_sorted,Intensities_vert_sorted,’.r’)

semilogy(Apertures_sorted,Intensities_vert_sorted,’r’)

hold off

figure()

plot(Apertures_sorted,FWHM_hor_sorted,’.’)

hold on

plot(Apertures_sorted,FWHM_hor_sorted)

plot(Apertures_sorted,FWHM_vert_sorted,’.r’)

plot(Apertures_sorted,FWHM_vert_sorted,’r’)

hold off

data_loc=strcat(data_dir,date,’/’,data_file_name,’/Data/’);

Intensity_file=fopen(strcat(data_loc,’Intensity_file.txt’),’w’);

Intensity=[Apertures_sorted’;Intensities_hor_sorted’;Intensities_vert_sorted’]

fprintf(Intensity_file,’%12s\t%12s\t%12s\n’,’&aperture’,’column’,’row’);

fprintf(Intensity_file,’%12.8f\t%12.8f\t%12.8f\n’,Intensity);

fclose(Intensity_file);

FWHM_file=fopen(strcat(data_loc,’FWHM_file.txt’),’w’);

FWHM=[Apertures_sorted’;FWHM_hor_sorted’;FWHM_vert_sorted’]

fprintf(FWHM_file,’%12s\t%12s\t%12s\n’,’&aperture’,’column’,’row’);

fprintf(FWHM_file,’%12.8f\t%12.8f\t%12.8f\n’,FWHM);

fclose(FWHM_file);
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A.17. fwhm.m

A.17 fwhm.m

This is a function to determine the FWHM of a waveform. Copyright (c) 2009, Patrick Egan, All

rights reserved.

function width = fwhm(x,y)

% function width = fwhm(x,y)

%

% Full-Width at Half-Maximum (FWHM) of the waveform y(x)

% and its polarity.

% The FWHM result in ’width’ will be in units of ’x’

%

%

% Rev 1.2, April 2006 (Patrick Egan)

y = y / max(y);

N = length(y);

lev50 = 0.5;

if y(1) < lev50 % find index of center (max or min) of pulse

[garbage,centerindex]=max(y);

Pol = +1;

%disp(’Pulse Polarity = Positive’)

else

[garbage,centerindex]=min(y);

Pol = -1;

%disp(’Pulse Polarity = Negative’)

end

i = 2;

while sign(y(i)-lev50) == sign(y(i-1)-lev50)

i = i+1;

end %first crossing is between v(i-1) & v(i)

interp = (lev50-y(i-1)) / (y(i)-y(i-1));

tlead = x(i-1) + interp*(x(i)-x(i-1));

i = centerindex+1; %start search for next crossing at center

while ((sign(y(i)-lev50) == sign(y(i-1)-lev50)) & (i <= N-1))

i = i+1;

end

if i ~= N
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A.18. wmean.m

Ptype = 1;

%disp(’Pulse is Impulse or Rectangular with 2 edges’)

interp = (lev50-y(i-1)) / (y(i)-y(i-1));

ttrail = x(i-1) + interp*(x(i)-x(i-1));

width = ttrail - tlead;

else

Ptype = 2;

%disp(’Step-Like Pulse, no second edge’)

ttrail = NaN;

width = NaN;

end

A.18 wmean.m

This is a function to find the weighted mean of some data. Copyright (c) 2008, John D’Errico,

All rights reserved.

function wm = wmean(X,W,dim)

% wmean: compute a weighted mean along a given dimension

% Usage: wm = wmean(X,W,dim)

%

% Arguments: (input)

% X - vector or array of any dimension

%

% W - (OPTIONAL) vector of weights, must be the same length

% as the size of X in the specified dimension. If W is

% not supplied or is left empty, then the built-in mean

% is called.

%

% At least one weight must be a positive number, all

% must be non-negative.

%

% dim - (OPTIONAL) positive integer scalar - denotes the

% dimension to compute the weighted mean over.

%

% If dim is not specified, then it will be the first

% dimension that matches the length of W.

%

% Arguments: (output)
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A.18. wmean.m

% wm - weighted mean array (or vector). wm will be

% the same shape/size as X, except in the specified

% dimension.

%

% Example:

% X = rand(3,5);

% wmean(X,[0 1 3.5],1)

% ans =

% 0.19754 0.53772 0.49303 0.61549 0.13113

%

% See also: mean, median, mode, var, std

%

% Author: John D’Errico

% e-mail: woodchips@rochester.rr.com

% Release: 1.0

% Release date: 7/7/08

if (nargin==1) || (isempty(W) && (nargin<3))

% no weights, no dim

wm = mean(X);

return

elseif isempty(W)

% no weights, dim provided

wm = mean(X,dim);

return

end

% weights were provided, and were not empty

if ~isvector(W)

error(’W must be a vector.’)

end

W = W(:);

if any(W<0)

error(’All weights must be non-negative’)

elseif all(W==0)

error(’At least one must be positive’)

end

nw = length(W);
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A.18. wmean.m

nx = size(X);

% Normalize the weight vector to unit 1-norm

W = W/norm(W,1);

% we need to find dim?

if (nargin<3) || isempty(dim)

dim = find(nx==nw,1,’first’);

if isempty(dim)

dim = 1;

end

elseif (dim<=0) || ~isscalar(dim) || dim~=round(dim)

error(’dim must be a positive integer scalar’)

end

if nx(dim) ~= nw

error(’Weight vector is incompatible with size of X’)

end

% compute the weighted mean - use bsxfun, then

% just sum down the specified dimension.

Wshape = ones(1,length(nx));

Wshape(dim) = nw;

wm = sum(bsxfun(@times,X,reshape(W,Wshape)),dim);
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