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Recent advances in the field of cooling, trapping, and manipulation of

atoms with laser light have created powerful experimental techniques for the

study of fundamental quantum mechanics. Among the many fields of research

made available by these advances are the study of quantum chaos and the

study of quantum transport. This dissertation describes our experimental

studies of quantum transport in optical lattices.

The study of quantum transport has traditionally been done in the

context of electronic conduction in atomic lattices. The crucial advantage

that optical lattices grant to this problem is an extremely long relaxation time.

Since the study of any quantum mechanical effect demands the preservation

of fragile interference effects, the relaxation time must be much longer than

the characteristic coherence time scales of the effect in question. In this way

optical lattices provide an almost ideal experimental system for this study.

The theory and experimental study of a stationary, one-dimensional

cosine potential is presented. The spectral features of this potential are probed

and Rabi oscillations between band states are observed.
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The first direct observation of dynamical band suppression, an effect

first predicted in the context of electronic conduction, is described. A theo-

retical analysis is provided which goes beyond the existing analyses to include

the effect of higher bands on the phenomenon.

The third study is that of the Wannier-Stark ladder and Bloch oscilla-

tions. The first experimental evidence of the fractional Wannier-Stark ladder

is also presented.

The final study is that of quantum tunneling. The lifetimes of the

Wannier-Stark states are measured and compared with Landau-Zener theory.

Deviations in the tunneling rates from the theoretical predictions are observed

and are found to be due to resonant enhanced tunneling between the ladder

states embedded in the continuum. Finally, the short time behavior of the

atomic tunneling is studied, and deviations from the exponential decay law

are observed. This is the first and only observation of non-exponential decay,

a completely general and fundamental prediction of quantum mechanics.
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Chapter 1

Introduction

In this first chapter, we introduce the idea of an optical lattice, a periodic

structure formed by the wave interference of two or more modes of the electro-

magnetic field. We also discuss its use in the experimental study of quantum

transport.

1.1 The interaction of atoms and light

When light interacts with atoms, both energy and momentum can be ex-

changed, and these exchange processes can be classified according to whether

they are coherent (stimulated) or incoherent (spontaneous). The latter type

is responsible for the radiation pressure force and the dissipative cooling and

trapping forces used in this experiment to prepare a cold atomic sample. Since

in all cases of spontaneous emission the scattered photon is equally likely to

be in the mode h̄!k as −h̄!k, on average there is no net momentum change on

re-emission and therefore the incident photon recoil determines the motion of

the atom.

Coherent scattering, in contrast to the random process of incoherent

scattering, is an effect in which the re-emitted photon is stimulated out by

the ambient electromagnetic field and, as a result, emerges in phase with this

stimulating field. For this reason it is referred to as coherent. The momentum

1
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imparted to the atom is simply the vector difference of the incident and outgo-

ing photon momenta. It can be shown, using the “dressed state picture,” that

the atomic energy levels are shifted due to these scatterings of the ambient field

[7]. This modification of the level structure is called the AC Stark effect and

results in a force referred to as the dipole force. The classical picture is that the

laser field polarizes the atom and the atomic dipole has an associated energy

related to its orientation with respect to the field polarization. This dipole

interaction then produces an intensity-dependent energy shift that results in

a force proportional to the intensity gradient. The dipole force dominates the

spontaneous emission force when far detuned light (compared to the natural

linewidth) is used, since the spontaneous force falls off quadratically with the

detuning from resonance ∆L, while the dipole force only falls off linearly in

the limit of large detuning [7]:

Fdipole ∝
∇I

∆L
(1.1)

Fspont ∝
I

∆2
L

. (1.2)

Here, I is the laser intensity. From these scaling laws it is clear that with suf-

ficient laser intensity, the spontaneous force can be negligibly small while still

generating an appreciable dipole force. While the laser cooling and trapping

required to prepare our atomic sample were accomplished with near resonant

light, the optical lattice was composed of far-detuned light, so that only the

dipole force interaction was important.

1.2 Optical lattices

An optical lattice is simply a periodic structure formed by the wave interference

of two or more modes of the electromagnetic field. One particular lattice type

is a spatially periodic variation in the intensity of the resultant electric field.
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Since the internal energy structure of an atom depends on the time averaged

electric field, the intensity profile acts like an external periodic potential. An-

other type of lattice is a periodic variation in the polarization, which produces

different energy shifts for different hyperfine sublevels. Perhaps the simplest

configuration for an optical lattice is a one-dimensional standing wave gener-

ated by two linearly polarized, counter-propagating traveling waves of equal

frequency and amplitude. The electric field is of the form

!E(x, t) = ŷE0 cos(ωLt + kLx) + ŷE0 cos(ωLt − kLx)

= ŷE0 cos(kLx)(e−iωLt + c.c.), (1.3)

and the corresponding intensity is

I ∝ 〈 !E · !E〉

∝ cos2(kLx). (1.4)

Since it is only the gradient of the intensity that affects the dynamics, we may

subtract a constant offset from the intensity, and we are left with an effective

potential

V (x) ∝ cos(2kLx), (1.5)

which has a periodicity of

a =
2π

2kL
=

λL

2
. (1.6)

In general, the traveling waves need not be precisely counter propagating, and

in the case where the wave vectors are at an angle θ, the resultant potential is

V (x) ∝ cos [2kLx sin(θ/2)] , (1.7)

with a corresponding periodicity of

a =
λL

2 sin(θ/2)
. (1.8)
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The position of the standing wave can be controlled by varying the relative

phase of the two beams. Equivalently, the optical potential will move at a

constant velocity proportional to the frequency difference ∆ν = ν1−ν2 between

the two beams. This effect is most easily seen when one considers that there

exists a reference frame moving at velocity v such that the Doppler shift cancels

out the frequency difference:

v =
λL

2
∆ν. (1.9)

Since an atom with a kinetic energy much greater than the depth of the optical

potential essentially moves “over hill and dale” as a free particle, equivalently,

a standing wave composed of two beams with a large frequency difference

will not affect the motion and can be treated as an average, spatially-uniform

offset in the energy. Therefore, one could consider adding other beams (e.g.,

perpendicular to the first pair) that would generate periodic variations in more

than one dimension. By adding a frequency offset between the beam pairs so

that the interference pattern generated by two beams from differing pairs could

be neglected due to its large effective velocity.

1.3 A two-level atom in a standing wave of light

In this section, we derive the effective Hamiltonian for a two-level atom in a

standing wave of far-detuned light. In this derivation, we treat the electromag-

netic field classically and derive the specific quantum mechanical form of the

interaction for a one-dimensional optical lattice. This formulation closely fol-

lows the derivation by Graham et al. [8]. Alternatively, we could have derived

the AC Stark energy shift by quantizing the field and using the dressed state

picture, which involves solving for the eigenenergies of the combined atom-field

states [7].

We begin by assuming that the atoms are isolated so that we can con-
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sider just a single atom interacting with the optical field. In addition, we

assume that the atom has a single ground state |g〉 and a single excited state

|e〉 separated in energy by h̄ω0 and with a transition dipole moment d. The

full Hamiltonian energy will be a sum of the center of mass part, the internal

energy, and the interaction term,

Ĥ = Ĥcm + Ĥinternal + Ĥinteraction, (1.10)

where

Ĥcm =
p̂2

2M
, (1.11)

Ĥinternal = h̄ω0|e〉〈e|, (1.12)

and

Ĥinteraction = −er̂ · E(r, t). (1.13)

Using the dipole approximation, we replace the position of the electron r with

the center-of-mass position of the atom R in the argument of the electric field

amplitude. We have then

Ĥinteraction = −d̂ · E(R, t). (1.14)

For the two-level atom, the the dipole matrix element projected along the

electric field is

d =
∣∣∣〈e|d̂ · ε̂|g〉

∣∣∣ . (1.15)

Later, we will discuss the consequence of the fact that sodium is not a two-

level atom, and we will find the correct form for the interaction term. Using a

one-dimensional, linearly polarized standing wave as in Eq. (1.3) but allowing

the field amplitudes and frequencies to differ,

E(x, t) = ε̂ [E1 cos(ω1t + k1x) + E2 cos(ω2t − k2x)] , (1.16)
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we find that the interaction term is

Ĥinteraction = −d(|e〉〈g|eiω0t + |g〉〈e|e−iω0t)E

= −d

2

[
E1σ

+ei(ω0t−ω1t−k1x) + E2σ
+ei(ω0t−ω2t+k2x) + H.c.

]
,

(1.17)

where we are using the rotating wave approximation, ignoring the sum fre-

quency terms of the form e±i(ω0t+ωt) [9]. Also, we are using the Pauli raising

and lowering operators σ±. Since the center of mass wave function is separa-

ble, we only consider motion along the x-axis. Without loss of generality, we

write the atomic state as

|Ψ(x, t)〉 = cg(x, t)|g〉+ ce(x, t)e−i∆Lt|e〉, (1.18)

where the detuning from resonance is defined as

∆L = ω1 − ω0. (1.19)

If we insert |Ψ〉 into the Schrödinger equation

ih̄
∂

∂t
|Ψ〉 = Ĥ|Ψ〉, (1.20)

we find

ih̄

(
∂cg

∂t
|g〉 +

∂ce

∂t
e−i∆Lt|e〉 − i∆Lcee

−i∆Lt|e〉
)

=

− h̄2

2M

∂2cg

∂x2
|g〉 − h̄2

2M

∂2ce

∂x2
e−i∆Lt|e〉

+ h̄ω0cee
−i∆Lt|e〉

− d

2

[
E1e

i(ω0t−ω1t−k1x) + E2e
i(ω0t−ω2t+k2x)

]
|e〉cg

− d

2

[
E1e

−i(ω0t−ω1t−k1x) + E2e
−i(ω0t−ω2t+k2x)

]
|g〉cee

−i∆Lt.

(1.21)

Operating on the left with 〈g| gives

ih̄
∂cg

∂t
= − h̄2

2M

∂2cg

∂x2
− d

2

[
E1e

ik1x + E2e
i(δt−k2x)

]
ce, (1.22)
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and operating on the left with 〈e| gives

ih̄
∂ce

∂t
= − h̄2

2M

∂2ce

∂x2
− d

2

[
E1e

−ik1x + E2e
−i(δt−k2x)

]
cg − h̄∆Lce, (1.23)

where the frequency difference between the two constituent beams is δ =

ω2 −ω1. For a sufficiently large detuning from resonance, we can neglect spon-

taneous scattering and simplify these equations by adiabatically eliminating

the excited state amplitude [8]. This procedure follows from a comparison of

the time/energy scales represented by each of the terms in Eq. (1.23):

1

h̄

p2

2M
≈ 1 MHz (several recoil energies)

Ω =
d · E0

h̄
≈ 500 MHz

∆L ≈ 100 GHz

(1.24)

We may safely discard the kinetic energy term and write ce as a product of

two time-dependent terms,

ce(t) = c′e(t)e
−i∆Lt. (1.25)

Inserting this expression into Eq. (1.23) and taking ∂2ce
∂x2 = 0, we have that

c′e(t) =
∫ t

0

d

i2h̄

[
E1e

−ik1x + E2e
−i(δt−k2x)

]
cg(t

′)e+i∆Lt′dt′, (1.26)

where we have taken c′e(0) = 0. The adiabatic assumption asserts that cg(t′)

varies much more slowly than e+i∆Lt′ and can be taken outside the integral.

We now have

ce = − d

2h̄∆L

[
E1e

−ik1x + E2e
−i(δt−k2x)

]
cg. (1.27)

Substituting this into Eq. (1.22) leaves us with

ih̄
∂cg

∂t
= − h̄2

2M

∂2cg

∂x2
+

d2

4h̄∆L

[
E2

1 + E2
2 + 2E1E2 cos(k1x + k2x− δt)

]
. (1.28)
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Shifting the overall energy by (d2/4h̄∆L) (E2
1 + E2

2) does not affect the dynam-

ics, and we have the effective Hamiltonian for an atom in the ground state,

Ĥ =
p̂2

2M
+ V0 cos(2kLx̂ − δt), (1.29)

where kL is the average wave vector, and the well depth is given by

V0 =
E1E2d2

2h̄∆L
. (1.30)

None of the alkali atoms, including sodium, is a true two-level atom;

however, by optically pumping our atomic sample, only one ground state F

level is populated. Moreover, since all of the (nearly) degenerate mF levels

experience the same well depth in the far detuned regime, the entire sample

experiences the same effective potential [7, 10]. This result is only true for

linearly polarized light. For elliptically polarized light, the sum of the dipole

matrix elements squared will in general depend on the hyperfine sublevel. In

some cases we did not directly optically pump the sample, but the magneto-

optic trap naturally produces a distribution which strongly favors the upper

F = 2 ground state. The dipole matrix element can be determined from the

Einstein A coefficient and will be done so in Chapter 2.

1.4 Connections to solid-state physics

The study of quantum transport began as early as the late 1920’s when Fe-

lix Bloch applied the nascent ideas of quantum mechanics to the problem of

electronic conduction in metallic crystals. He showed that because of the peri-

odicity of the lattice, the eigenstates were plane waves modulated by periodic

functions of position [11]. Moreover, he showed that due to the discrete trans-

lational symmetry, there was a new conserved quantity k, called the quasimo-

mentum, that behaved like the free particle momentum. As for a free particle,

the velocity of a Bloch state is related to the energy by the derivative with
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respect to the momentum, and as for a free particle, the time rate of change

of the quasimomentum is equal to the force from an applied field. These re-

sults led Bloch, and others, to the realization that electrons should oscillate

instead of accelerate uniformly in response to an applied, static electric field

[11, 12, 13]. This phenomenon of Bloch oscillations was predicted to produce

a spectral feature called the Wannier-Stark ladder [14]. Additionally, the life-

time of the Wannier states was predicted to be governed by Landau-Zener

tunneling [13, 15, 16]. These fundamental predictions concerning quantum

transport in general periodic potentials waited decades before experimental

science could provide supporting evidence. In 1972, optical absorption mea-

surements of Gallium Arsenide performed by Koss and Lambert provided the

first experimental observation of the Wannier-Stark resonances [17]. This ex-

periment followed fourteen years of debate in the community about their very

existence. In the years that followed, spurred on by the hope of harnessing the

Bloch oscillator for the generation of terahertz radiation, improvements were

made in the purity of the materials as well the structure. Namely, researchers

developed superlattices that shortened the Bloch oscillation period below the

electronic relaxation time, and this technique produced much cleaner results

[18, 19, 20].

Somewhat in parallel, advances were being made in the field of laser

cooling and trapping. In 1985, the first demonstration of laser cooling of a

room temperature atomic vapor (300 K) to 50mK was made, and only three

years later a magneto-optic trap was realized in which a the atomic sample

could be cooled and confined [21]. Then in 1996, Ben-Dahan et al. observed

Bloch oscillations for the first time using a laser cooled sample of Cesium atoms

in a far detuned accelerating optical lattice [22]. Almost simultaneously, we

made our measurements of the Wannier-Stark ladder using optical lattices

[2]. These two experiments marked the beginning of the study of quantum
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transport with optical lattices [23, 24]. Since those first experiments, we have

studied tunneling [3], non-exponential decay [4], Rabi oscillations between

Bloch bands [5], and the phenomenon of band collapse [6] using optical lattices.

The crucial advantage that optical lattices grant to this problem is

an extremely long (infinite by comparison) relaxation time. In solids, relax-

ation happens because of electron scattering from lattice phonons, impurities,

lattice dislocations, or other electrons. In our optical lattice, the relaxation

time was determined by the spontaneous emission rate. Although phase in-

stabilities were present, they were at a very low level. Moreover, although

they are random, they preserve the lattice periodicity and are hence inher-

ently non-dissipative. To be fair, the figure of merit for decoherence, or the

lack thereof, is given by the ratio of the relaxation time to the characteristic

coherent time scale. This ratio for the study of Bloch oscillations in optical

lattices is presently over 2500 while for superlattices it is on the order of 1 (see

Table 1.1).

Some excellent work on cooling and wave packet manipulation has been

done with near resonant optical lattices [25, 26]; however, it must be stressed

that the phenomena studied and presented in this dissertation rely on the

uninterrupted coherent evolution associated with the conservative dipole po-

tential. These coherent effects are destroyed by the dissipative, incoherent

scattering of spontaneous photons which occurs when the atomic resonance is

approached.

In Table 1.1 a comparison of the parameters for atomic superlattices

and optical lattices is given. One major difference between these two systems

is that in the atomic system, there is no significant particle-particle interac-

tion since the sample is so dilute and the collisional cross section is small.

This is very unlike the electronic case where there there is both a long range

electrostatic interaction and an exchange interaction due the half integer elec-
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Table 1.1: Comparison of physical parameters
Superlattices Optical lattices

Particles electrons 133Cs atoms 23Na atoms
Type fermions bosons bosons
Lattice constant 10 nm 426 nm 295 nm
Bloch bandwidth 250 GHz 2 kHz 25 kHz
Free-particle density 1018/cm3 1010/cm3 1010/cm3

Particles per lattice site 1 0.1 0.06
Thermal velocity (in 1 dim.) 10 km/s 0.8 mm/s 59 mm/s
Bloch period (τB) 0.4 ps 0.1 ms 25 µs
Relaxation time (τr) 0.35 ps 250 ms 10 ms
τr/τB ∼1 ∼2500 ∼400

tron spin. Future studies of quantum transport with optical lattices will most

probably include the use of a Bose condensate to study collective effects, and,

although it has not yet been achieved with laser cooling, a degenerate Fermi

gas could be studied as well. It has been predicted that the fermionic particle

density in a lattice has a quantized response to a dilation of the period [27].

It has also been suggested that quantized adiabatic particle transport could

be studied with optical lattices [28]. Finally, there are a number of interesting

phenomena predicted for quantum transport in quasiperiodic lattices [29, 30].



Chapter 2

Experimental Method

2.1 Overview

This experimental study of optical lattices consisted of three important com-

ponents: the preparation of the initial conditions, the generation of the in-

teraction potential, and the measurement of the final state of the atoms. A

schematic of the entire experimental sequence is shown in Fig. 2.1, and the

timing diagrams for the resonant trapping light and the optical lattice light

are provided in Figs 2.4 and 2.5.

The initial conditions were a spatially localized ensemble of atoms pre-

pared in the fundamental band of the optical lattice. This ensemble was pre-

pared by first trapping and cooling a room temperature vapor in a magneto-

optic trap. Then the optical lattice was turned on and the subset of atoms

projected into the fundamental band was separated in velocity from those

atoms in higher bands by an acceleration of the lattice. By a careful choice of

the well depth Vtransport and acceleration atransport (see Fig. 2.5), the tunneling

rate from the first to the second band was very small while the rate across all

other band gaps was large. This situation allows only those atoms in the first

band to be accelerated by the lattice while leaving all other atoms unaffected.

After this preparation stage, the optical lattice position and amplitude were

varied to realize the potential under study. During this stage a subset of the

prepared atoms were excited to higher bands. This step was followed by the

12
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Load MOT
(6 s)

Interaction with
optical  lattice

(1 ms)

Free drift
(3 ms)

Freezing molasses
and CCD exposure

(10 ms)

Figure 2.1: Schematic of the experimental sequence. First the atoms are
collected and cooled in the MOT. The trapping fields are extinguished and
the the optical lattice is introduced. After interacting with the optical lattice,
the atoms are allowed to drift freely in the dark. Finally, the cooling beams
are turned on freezing the atoms in place and the flurorescence is imaged on
a CCD camera.
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measurement of the survival probability of the lowest band. As was done for

the preparation of the initial conditions, an acceleration was imposed which

transported those atoms which were in the lowest band, survivors of the inter-

action, to a higher velocity. The timing diagram for this sequence is shown in

Fig. 2.5. The atoms were finally allowed to drift freely in the dark for a few

milliseconds, and a “freezing” molasses was turned on to image their spatial

distribution on a charge coupled device camera (CCD) [21]. An example of a

two dimensional CCD image obtained is shown in Fig. 2.2. This image consists

of three distributions: (1) atoms that were not initially trapped in the lowest

band and immediately tunneled out of the well during the initial acceleration,

(2) atoms that were trapped in the first band at the beginning of the interac-

tion but were driven out, and (3) atoms that remained in the first band during

the entire sequence. The normalized population of the fundamental band was

then calculated by dividing the fluorescence of group (3) by the sum of that

from groups (2) and (3). Typically, these images were integrated along the

vertical axis to produce a one-dimensional line-shape along the optical lattice

axis since the motion in the other two dimensions was essentially free and

therefore contained no information other than the initial MOT temperature.

An example of this one dimensional lineshape is provided in Fig 2.3.

2.1.1 Computer control

The experimental sequence is shown in Fig. 2.1. The timing of the experi-

mental steps required great precision (100 ns resolution) and was completely

automated. Although functional, the computer system, shown in Fig. 2.6, was

a hybrid of PC and Mac platforms. The PC was used to trigger the experiment

and program the external function and arbitrary waveform generators while

the Mac collected the CCD images from the Princeton Instruments camera

controller. The PC also analyzed the photodiode-signal records of the optical
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~1 cm

Figure 2.2: Image of resonance fluorescence from an atomic distribution ac-
quired by the CCD camera. This exposure is taken during the freezing molasses
period following a free drift. It consists of three distributions: (1) atoms that
were not initially trapped in the lowest band and immediately tunneled out of
the well during the initial acceleration are located in the left group, (2) atoms
which were trapped in the first band at the beginning of the interaction but
were driven out are the middle bunch, and (3) atoms that remained in the first
band during the entire sequence are found in the right group. The normalized
population of the fundamental band was then calculated by dividing the total
fluorescence of group (3) by the sum of that from groups (2) and (3).
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Figure 2.3: The one-dimensional lineshape of the atomic distribution obtained
by integrating along the optical lattice axis a two dimensional image (as in
Fig 2.2) acquired by the CCD camera.

lattice intensity captured by an external digitizing oscilloscope.

The 486-33 MHz PC was fitted with two general purpose National In-

strument I/O boards: a PC-DIO-24 board with TTL ports for generating tim-

ing triggers, and a GPIB-PCIIA board for high-level control of other devices.

The National Instruments Lab Windows-DOS compiler/debugger was used to

code the programs, which were then compiled with Microsoft C 6.0 into stand-

alone executables. Since the output of the I/O boards was interrupt driven,

the timing was slow (with a resolution of about 20 µs) and random at the level

of its resolution. Therefore, the PC-DIO-24 board was used essentially to start

the experiment. All of the critical timing was provided by Fluke-Philips PM

5712/5715 pulse generators and by Stanford Research Systems DS345 and Tek-

tronix AWG5105 programmable arbitrary waveform generators. The control

hierarchy for the trapping and measurement electronics is given in Fig. 2.7,
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Figure 2.4: Timing diagram for the trapping and cooling sequence as well as
the exposure following the interaction. First the atoms are collected and cooled
in the MOT. The magnetic fields are then turned off for 2 ms of cooling. Then
the resonant light is turned off and the optical lattice is introduced. After
interacting with the optical lattice, the atoms are allowed to free drift in the
dark. Finally, the cooling beams are turned on, freezing the atoms in place,
and the flurorescence is imaged on a CCD camera.
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Figure 2.5: Timing diagram for the interaction sequence. Both the optical
lattice well depth and velocity are shown. After the cooling stage the resonant
light is turned off and the optical lattice was turned on. A subset of atoms is
projected into the fundamental band and separated in velocity by an acceler-
ation atransport. After this preparation stage, the optical lattice position and
amplitude were varied to realize the potential under study. This step was fol-
lowed by separating the atoms in the lowest band from those in higher bands
by the same acceleration atransport. The atoms are then allowed to free drift in
the dark and the spatial distribution is illuminated with the resonant molasses
light.
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Figure 2.6: The programming and control of the experimental devices was
handled by a 486/33 MHz PC running Lab Windows while the data collection
from the CCD camera was performed by a Mac IIsi. This hybrid system,
although functional, had certain disadvantages. The main drawback was that
data analysis required information from both systems and so could not be
done on line without using a third system (typically a unix based mainframe
for variety).
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and the hierarchy for the optical lattice electronics is shown in Fig. 2.8. In

both cases, RF signals are tailored, amplified, and sent to acousto-optic mod-

ulators that send the proper beams with the proper amplitudes and frequency

offsets to the atoms.

2.2 Initial conditions

The collection and cooling of the sodium was accomplished by a standard

σ+ − σ− magneto-optic cell trap (MOT) [21, 31]. Approximately 105 atoms

were trapped in a Gaussian distribution with a width of σx = (0.20±0.06) mm

in position and σp = (4.5±0.5) h̄kL in momentum, where h̄kL is the momentum

of a single photon of resonant light (589nm). The atoms were cooled from a

room temperature vapor of sodium at a pressure of about 10−10 Torr contained

in a glass cell. The cell was attached to a 20 l/s ion pump that maintained the

low pressure, while a small sodium ampoule in a copper tube attached to the

chamber replenished the sodium lost due to adsorption. The trap was formed

by three pairs of counter-propagating, circularly polarized laser beams that

intersected at the center of the glass cell. In addition, there were two current-

carrying coils in an anti-Helmholtz configuration that provided a magnetic

field gradient and a zero point in the magnetic field that coincided with the

intersection of the six beams. The earth’s magnetic field and stray fields from

the optical table were nulled to a level of 50 mG by three Helmholtz pairs

aligned along three orthogonal directions.

The light for the MOT was provided by a Coherent 899-21 single mode

cw dye laser pumped by a Coherent Innova 200 argon ion laser as shown in

Fig. 2.9. The D2 transition (3S1/2, F = 2) → (3P3/2, F ′ = 3) for sodium

at 589 nm was found with the aid of a NIST wavemeter with a resolution of

50 MHz, and the laser was actively locked 65 MHz to the blue of this line using

saturated-absorption FM spectroscopy. Before entering the optical fiber, the
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Figure 2.7: The MOT intensity was controlled via AOM4 by the TEK
AWG5105 arbitrary waveform generator. It was intensity stabilized by an
external lock box. The AWG also triggered the CCD controller to acquire an
image.
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Figure 2.8: The overall intensity of the optical lattice beams was controlled
through AOM3. AOM2 was double passed and produced a variable frequency
offset. It was driven by two DS345s (vfine and vcoarse) which were summed
together so that extremely fine time (100 ns) and velocity (.25 recoil) resolution
over the optical lattice could be achieved during the interaction time. AOM1
was driven by a stable Marconi synthesizer which could also be frequency
modulated to generate the spectroscopic probe.
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33% 67 %

    Dye Laser
CW single mode
   (home-built)

    Dye Laser
CW single mode
(Coherent 899-21)

       Argon Ion
      Pump Laser
(Coherent Innova 200)

Saturated Absorption
    Frequency Lock

Fiber
Optic

Fiber Optic
       to
Wavemeter

Monitor Cavity
Comparator
Cavity

Interaction
Beam

λ/2
Linear
Polarizer

Power
Lock PD

For MOT/Molasses
Beams (split 6 ways)

EOM1

AOM1

Variable
Aperture

92%

8%

3%
97%

Figure 2.9: Schematic of the laser table. A single argon-ion laser pumps two cw
single-mode dye lasers. The commercial dye laser (Coherent 899-21) provides
the cooling and trapping beams. The home-built laser provides the optical
lattice interaction beams.
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light was deflected by an acousto-optic modulator (AOM1) which shifted it

down by 80 MHz so that the light incident on the atoms was 15 MHz to the

red of the transition. This near resonant light is tuned for the F = 2 ground

to F ′ = 3 excited state cycling transition; however, it also can populate the

F ′ = 2 excited state. If this happens, the atom can either decay back to the

F = 2 ground state or fall to the F = 1 ground state (see Fig. 2.10). If it

falls to the lower ground state, the interaction with this light stops abruptly

since it is now 1.772 GHz (the ground state splitting) away from resonance. In

order to prevent this optical pumping into the “dark” ground state, the MOT

light was passed through an electro-optic modulator that shifted 15% of the

optical power into each sideband at 1.712 GHz. The upper sideband was then

resonant with the F = 1 ground to the F ′ = 2 excited state transition. Atoms

that fell into the lower ground state were re-excited to the F ′ = 2 excited

state where they could fall back to the F = 1 state or back to the “correct”

F = 2 ground state. The time for optical pumping out of the cycling transition

was measured to be approximately τpump = 30µs by measuring the decay of

MOT fluorescence with a photomultiplier tube after switching the repump

sideband off. By extinguishing the repump sideband 100 µs before the cooling

step ended, more than 95% of the distribution was optically pumped into the

lower ground state. In most cases we did not directly optically pump the

atoms; however, the repumping sideband naturally produces a distribution

which strongly favors the upper F = 2 ground state. In either case, the

vast majority of the atoms were prepared in a known ground state. A rough

estimate of the steady-state populations of the two ground states can be made

if we first note that the repump sideband is roughly equal to the saturation

intensity 36 mW/cm2 for the F = 1 ↔ F ′ = 2 transition for isotropic pump,

and therefore the re-excitation time is on the order of twice the lifetime, 2τ =

33 ns [32]. If we assume that the atom will decay from the F ′ = 2 to the
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589 nm

32S1/2 1.772 GHz

32P3/2
60 MHz
36 MHz
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Figure 2.10: Term diagram for the sodium D2 line. The nuclear spin of sodium
is I = 3/2, and so the ground state of sodium 3S1/2 has two hyperfine levels
F = J + I = 1, 2. For the 3P3/2 excited state J = 3/2 so F = 0, 1, 2, 3.
The 2F + 1 magnetic sublevels are also shown. Representative examples of
(a) the cooling and trapping light, (b) the optical pumping sideband, (c) the
spontaneous decay, and (d) the far-detuned optical lattice light are shown.

F = 2 ground state with a 50% probability, then the effective repump time is

approximately four times the lifetime, τrepump = 60 ns. One minus the ratio of

this rate with the optical pumping rate out of the F = 2 ground state gives

the fraction occupying the upper F = 2 ground state:

PF=2 = 1 − τrepump

τpump
= 1 − 60 ns

30 µs
= 99.8%. (2.1)

The MOT light was turned on and off and was intensity stabilized

by the acousto-optic modulator (AOM1) mentioned above. The frequency-

downshifted beam was aligned through a polarization-preserving fiber, which

acted as a spatial filter, producing a clean gaussian spot. The MOT light

emerging from the fiber was monitored continuously on a photodiode (Power

Lock PD) and the signal provided the feedback necessary to stabilize the inten-

sity. Residual fluctuations were less than 1% of the average intensity. When

the far-detuned optical lattice was on and the MOT light was off, a MOT
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inhibit signal (see Figures 2.7 and 2.8) disconnected the driver from the mod-

ulator (AOM1) to prevent any residual RF leakage that would allow resonant

light to reach the atoms during the interaction.

In order to optimize the size and temperature of the atomic distribution,

we would load the MOT at our highest intensity (200 mW total split between

six beams) for about 3 to 4 s, and then we would extinguish the magnetic

field gradient while leaving the resonant light on to maximize the polarization

gradient cooling rate [33]. This final 2ms of “improved cooling” at a detuning

of (15-20)MHz reduced the momentum width by a factor of 2 from σp = 10 h̄kL

to σp = (4.5 ± 0.5) h̄kL without an appreciable amount of spatial spreading.

2.3 Experimental realization of the optical lattice

The optical lattice beams were provided by a home-built dye laser based on

a design by Jim Bergquist at NIST in Boulder, CO [34]. This laser was also

pumped by the Coherent Innova 200 argon ion laser as shown in Fig. 2.9. Typi-

cal output power was 1 W single mode with 66% of the 19 W multi-line visible

pump power. The wavelength was monitored by a NIST LM-11 wavemeter

and was stabilized using the Hänsch-Couillaud lock scheme [35]. The invar

reference cavity used in this locking scheme drifted less than 100 MHz per

hour, which was very small amount compared to the typical 30 GHz detuning.

2.3.1 Form of the optical potential

The optical potential was formed by two linearly polarized, spatially filtered,

Gaussian traveling waves from the same laser. The frequencies of the two

arms of the standing wave were controlled independently by two acousto-optic

modulators as described in Section 2.3.4. It was very important that the beams

were spatially filtered, since any higher order modes can produce transverse
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interference fringes, resulting in local variations in the well depth. The spatial

filtering was accomplished by focusing the light through a 50 micron pinhole.

After the pinhole, a lens recollimated the beam, and a variable iris blocked all

but the center lobe. The beam is then a linearly polarized, traveling Gaussian

beam which we approximate with the form

!EGauss = ŷE0e
−(z2+y2)/w2

0 cos(ωLt + kLx). (2.2)

The time-averaged intensity has the form

〈I〉 =
1

2
cε0E

2
0 . (2.3)

The integrated power is calculated over the cross section

〈P 〉 =
∫
〈I〉dA = πw0cε0E

2
0

∫ ∞

0
dr e−2r2/w2

0 =
πcε0w2

0E
2
0

4
. (2.4)

This gives an expression for the field strength at the center of the Gaussian

beam in terms of experimentally measured quantities:

E0 =

√√√√ 4〈P 〉
cε0πw2

0

. (2.5)

The average power 〈P 〉 was measured with a Coherent Fieldmaster power me-

ter which was calibrated with respect to a NIST traceable Newport model

1825-C powermeter and model 818-UV head, which has an accuracy of ±5%.

The width w0 of the beam was measured by photographing the diffuse trans-

mitted spot through a thin sheet of paper with our CCD camera. The typical

beam width used in the experiment was 2 mm, with an absolute uncertainty

of ±1%.

2.3.2 Well depth characterization

In Section 1.3 the well depth was calculated for a two-level atom and found to

be

V0 =
E1E2d2

2h̄∆L
, (2.6)
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where ∆L = ωL − ω0 is the laser detuning from the atomic resonance ω0,

and d is the dipole matrix element between the ground and excited state.

However, the D2 transition J = 1/2 → J ′ = 3/2 of sodium shown in Fig. 2.10

is not a two-level system. In fact, there are two ground states F = 1 and

F = 2 and four excited states F ′ = 0, 1, 2, 3, each with a 2F ′ + 1 degeneracy.

Therefore, the actual dipole coupling for a particlar ground state sublevel

|F mF 〉 is obtained from summing over its couplings to all of the available

excited states. When the detuning is large compared to the excited state

frequency splittings, all of the excited states participate, and the detuning for

each excited state is approximately the same. In addition, the dipole coupling

summed over all excited states and all polarizations is independent of the

mF sublevel considered [10]. Because of the spherical symmetry of the dipole

operator, the three Cartesian components in this sum are equal and therefore

the effective dipole coupling for the case of linearly polarized light and large

detuning regardless of the ground state population is one third the square of

the dipole matrix element for the full D2 (J = 1/2 ↔ J ′ = 3/2) transition.

|deffective|2 =
e2|D12|2

3
. (2.7)

This result is only true for linearly polarized light. For elliptically polarized

light, the sum of the dipole matrix elements squared will in general depend on

the hyperfine sublevel. The dipole matrix element e2|D12|2 can be obtained

from the Einstein A coefficient, which is related to the radiative lifetime [36]

A21 = Γ =
1

τ
=

ω3
0e

2|D12|2

3πε0h̄c3

2J + 1

2J ′ + 1
, (2.8)

where J = 1/2 is the ground state and J ′ = 3/2 is the excited state. The

radiative lifetime τ = 16.6 ns is known empirically. Using Eqs. (2.7) and (2.8),

the effective dipole moment is then

deffective =

√
ε0h̄λ3

L

4π2τ
= 1.71 × 10−29Cm. (2.9)
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Using this relationship, Eq. (2.5) for the field strengths, and Eq. (2.6), we find

that the well depth is

V0 =

√
P1P2

w1w2∆L
· 4c2

τω3
0

(2.10)

where P1 and P2 are the average powers of the two beams. By some cosmic

coincidence, the factor on the right is numerically very similar to h:

4c2

τω3
0

≈ 6.62 × 1012 s

kg
(2.11)

so that if the optical power is expressed in mW, the beam sizes in mm, and

the detuning in GHz/2π, the expression for the well depth has a very simple

form

V0 ≈

√
P̃1P̃2

w̃1w̃2∆̃L

· h̄ MHz (2.12)

where this formula is accurate to three significant digits. There is nothing sig-

nificant about this coincidence, but I point it out here merely for amusement.

If we write this using our natural energy unit, we get

V0 ≈

√
P̃1P̃2

w̃1w̃2∆̃L

· 0.795 · Eu (2.13)

where Eu = h · 200 kHz (see Section 3.1).

2.3.3 Spontaneous emission rate in an optical lattice

In this section, we calculate the rate of spontaneous emission induced by the

far-detuned beams of the optical lattice. This quantity is very important since

spontaneous emission is the dominant decohering process in these experiments.

The total photon scattering rate is given by the product of the lifetime and the

(steady state) excited-state population, Γρee. Ignoring collisional relaxation

we have for the scattering rate [32]

Rsc = (Γ)
(Ω/Γ)2

1 + 4(∆L/Γ)2 + 2(Ω/Γ)2
(2.14)
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where the resonant Rabi frequency is defined in terms of the dipole moment

and electric field amplitude

Ω :=
d · E0

h̄
. (2.15)

Eq. (2.14) is sometimes written in terms of the saturation intensity Isat

Rsc =
(

Γ

2

)
(I/Isat)

1 + 4(∆L/Γ)2 + (I/Isat)
(2.16)

where
I

Isat
= 2

(
Ω

Γ

)2

(2.17)

and

Isat =
cε0Γ2h̄2

4|ε̂ · d|2 = 9.17 mW/cm2 (2.18)

for the case of large detuning (i.e., we are using the effective dipole moment

defined in Eq. (2.7)) Using Eq. (2.6) we can conveniently express Ω in terms

of the well depth

Ω2 =
2∆LV0

h̄
. (2.19)

Using this relationship we can approximate Rsc in the large detuning limit

∆ , Ω as

Rsc ≈
2πΓ

2∆L

V0

h
. (2.20)

For typical experimental parameters of V0 = 0.4Eu and ∆L = 2π · 30 GHz

Rsc = 200 s−1 or one event every 5 ms. For the tunneling experiments of

Chapter 6, the large acceleration duration was at most 100 µs and in this time

approximately 2% of the atoms scattered a spontaneous photon.

2.3.4 Amplitude and phase modulation

The amplitude and phase of the optical lattice were controlled using acousto-

optic modulators (AOM’s). Electro-optic modulators can also be used and are

in general much faster than AOM’s; however, AOM’s have a distinct advantage

in that an overall frequency difference between the two beams of the optical
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lattice is easily obtained. EOM’s can only provide a finite phase shift of a

traveling wave while an AOM actually frequency shifts the beam. Piezo driven

mirrors can also be used to change the total path length and therefore the phase

of the standing wave. However, piezos are limited to finite phase shifts and

moreover are orders of magnitude slower than either EOM’s or AOM’s.

The optical lattice setup with the details of the double-pass configu-

ration are shown in Fig. 2.11. One of the constituent beams of the optical

lattice was passed through a single AOM operating at a frequency of 80 MHz.

The other was passed twice through an AOM operating at a frequency of

40 ± 5 MHz producing a frequency shift of of 80 ± 10 MHz. Therefore, the

frequency difference of the beams could be scanned in the range ±10 MHz,

corresponding to a velocity range of ±100 recoils = ±3 m/s. The slew rate

of the AOM was limited to approximately 1 MHz/µs, which limited the ac-

celerations to below 600,000 m/s2. The largest acceleration we studied was

20,000 m/s2. The reason for double-passing the AOM is to minimize the beam

deflection as the frequency of the AOM is scanned. Such wide frequency shifts

would grossly misalign the beam if done in a single-passed configuration.

Double-passed AOM

The secret to getting good efficiency through a double-passed system is to

provide the AOM with a spot small enough to fit through the crystal with a

long Rayleigh length (the beam should be as “flat” as possible). The focus

of the beam should be centered in the AOM crystal, and one should ideally

use a curved mirror with a focal length matched to that of the input lens for

the retro-reflection. In our case, we used a lens and a flat mirror placed fairly

close together.
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Figure 2.11: Schematic of the optical lattice setup. AOM3 provides global
control of the intensity. AOM1 is a single passed 80 MHz AO shifting the
beam down by this amount. AOM2 is a double passed 40 MHz AO shifting the
beam down by twice its frequency without leading to an appreciable angular
deflection.
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Characterization of the AOM performance

In order to characterize the phase evolution of the standing wave, we per-

formed a heterodyne measurement using a Michelson interferometer as seen

in Fig. 2.12. The intensity of the light striking the photodiode is proportional

to the cosine of the integrated phase difference. Therefore, by measuring the

beat-note frequency of the photodiode signal, we could determine the exact

frequency difference of the two beams ∆ν and therefore the velocity of the

standing wave:

v =
λ

2
∆ν. (2.21)

The photodiode signal was captured by a Tektronix TDS 524A digitizing scope

and uploaded to a PC where the instantaneous frequency of the signal could

be determined. A crude estimate of the instantaneous frequency ∆ν(t) was

obtained by measuring the zero crossings of the signal. This function was then

used as a first guess for a least-squares fitting program that refined the guess

further. An example of the beat note signal determined by this fitting routine

is shown in Fig. 2.13. This velocity profile was used in a tunneling experiment

where the acceleration switches from a low level (atransport) to a higher level

(atunnel) for which the tunneling rate from the first band is large.

For the experiments studying non-exponential decay in Chapter 6, the

deviations from exponential decay were predicted to occur in the first few

microseconds. For this reason, we had to know precisely what was the behavior

of the standing wave velocity at this level. Specifically, we needed to know what

the instantaneous acceleration was as a function of time with a resolution

of tens of nanoseconds. Since our calculated fit of the frequency difference

was limited due to the finite sampling time of the oscilloscope, we decided to

determine the response of the double-pass system with a spectrum analyzer.

The logic of this analysis is as follows. A DC voltage V applied to

the FM modulation input of the AOM driver produces a constant shift in the
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Figure 2.12: Schematic of the Michelson interferometer used to measure the
time dependent phase evolution of the standing wave.

frequency ∆ω of the double-passed beam and therefore a constant velocity for

the standing wave. The light after passing through the AOM has the form

!E(!r, t) = !E(!r)eiωLt cos
(
ω0t +

∫ t

0
∆ω(V )dt

)
, (2.22)

where ω0 is the carrier frequency of the AOM and the frequency shift ∆ω is

a linear function of the applied voltage V . A time dependent voltage V (t) at

the FM input will produce a time dependent frequency shift and therefore a

time dependent velocity for the standing wave. In fact, the velocity is simply

proportional to the applied voltage V (t). However, at some level the double-

passed system should not produce an instantaneous frequency shift exactly

proportional to the input voltage because of electronic or optical delay. The

limiting factor is the time required for the acoustic wave in the AOM crystal

to propagate across the beam diameter. Typically, this time was on the order

of 100 ns, as determined by a measurement of the diffracted order intensity
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Figure 2.13: Three-stage acceleration process used to study tunneling. This
figure displays the beat note frequency of the counter-propagating pair as a
function of time determined from a digitized heterodyne signal. The velocity
of the standing wave is proportional to this frequency, and therefore the accel-
eration is proportional to the instantaneous slope. The vertical axis is in units
of MHz, and the horizontal axis is in units of µs. During the smaller acceler-
ation the velocity slope is 5.1 kHz/µs which corresponds to an acceleration of
atransport = 1500 m/s2.
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response to switching off the RF. As was mentioned before, the slew rate of the

voltage-controlled oscillator (VCO) limits the maximum rate of change of the

frequency. Therefore, there is some maximum slope of the voltage V (t) (some

acceleration) that cannot be followed by the VCO. However, as was said above,

the slew rate limit for the acceleration is 600,000 m/s2, 30 times the largest

acceleration we imposed. In order to predict the resulting velocity profile given

some control voltage V (t), we must also know the maximum rate of change

of the acceleration, the second derivative of V (t). In order to characterize the

exact behavior of the standing wave velocity v(t) as a function of an arbitrary

input voltage V (t), we measured the response of the velocity to a sinusoidally

varying voltage at many different frequencies. In this way, a transfer function

was determined which could then be used to reconstruct the actual velocity

profile given an arbitrary input voltage.

Our measurement was done in the following way. We applied a sinu-

soidal signal to the FM input of the VCO of the form

V (t) = U0 sin(ωmt), (2.23)

which modulated the frequency of the VCO and produced a first order diffracted

spot with an electric field !E1 of the form given by Eq. (2.22)

!E1(!r, t) = !E1(!r)e
iωLt cos

(
ω0t +

A ∆ω

ωm
cosωmt

)
, (2.24)

where the DC frequency excursion ∆ω is proportional to the amplitude of

the input voltage U0, and the attenuation factor A depends on the frequency

ωm. The DC frequency excursion was measured directly with an EIP 548A

microwave frequency counter and found to be

∆ω = 40.40
MHz

Volt
· U0. (2.25)

The frequency-shifted beam was heterodyned with the unshifted zeroth-order

beam E0 passing through the AOM, and the mixed signal was detected with
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a photodiode. The photodiode current was of the form

Iphotodiode ∝ E∗
1E0 ∝ cos

(
ω0t +

A ∆ω

ωm
cosωmt

)
. (2.26)

We expand the right hand side in terms of ordinary Bessel functions and have

Iphotodiode = I0

∞∑

n=−∞
Jn

(
A ∆ω

ωm

)
cos [(ω0 + nωm)t] . (2.27)

This current was injected into a spectrum analyzer that mixes it with a local

oscillator and displays the power in dBm. In order to extract the attenua-

tion factor A, we must measure the ratio of two sideband amplitudes. The

difference in power of the nth sideband from the carrier is

Pn − P0 = 20 log10

[
Jn(λ)

J0(λ)

]

(2.28)

where λ = A∆ω
ωm

. We solved Eq. (2.28) for λ at various values of the modulation

frequency. Knowing the amplitude of the control voltage U0, the proportion-

ality constant for the DC frequency excursion ∆ω (given by Eq. (2.25) ), and

the value of the modulation frequency, we were able to determine the attenua-

tion function A(ωm). The results of this measurement are shown in Fig. 2.14.

Since the size of the first order sideband scales inversely with the modulation

frequency, at very high frequencies, the sideband peak becomes buried in the

noise of the spectrum analyzer. At this point, the determination of A is dif-

ficult, and the modulation amplitude must be increased to proceed to higher

frequencies. In this figure, six sets of data are shown for six different values

of the control voltage amplitude. Our assumption is that A depends only on

the modulation frequency and not on the modulation amplitude, and Fig. 2.14

confirms this assumption. With the transfer function A determined, we were

able to reconstruct the actual velocity profile given an arbitrary input voltage.

Fig. 2.15 shows an ideal trapezoidal velocity function and the actual standing

wave velocity calculated by expanding the ideal function into a Fourier sum,
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Figure 2.14: The AOM transfer function A(ωm) measured for six different
modulation amplitudes. Since the size of the first order sideband scales in-
versely with the moduation frequency, at very high frequencies, the sideband
peak becomes buried in the noise of the spectrum analyzer and the value of A
is overestimated.

multiplying each term with the corresponding value of A, and then resumming

the series. The thin line is the ideal function. The dashed line is the ideal

function with only 29 terms, and the thick line is the resulting velocity profile.

By taking the derivative of this function, we can calculate the instantaneous

acceleration as a function of time with a resolution of a few tens of nanosec-

onds. This derivative is shown in Fig. 2.16, and we see that the standing wave

acceleration switches from zero to 80% of the total within 220 ns.
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Figure 2.15: The resulting standing wave velocity response to an ideal trape-
zoidal profile. This velocity profile was calculated by expanding the ideal
function into a Fourier sum, multiplying each term with the corresponding
value of A, and then resuming the series. Only 29 terms of the infinite sum
were kept. The thin line is the ideal function. The dashed line is the ideal
sum with only 29 terms, and the thick line is the resulting velocity profile.
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Figure 2.16: A plot of the standing wave acceleration response to an abrupt
switch. This graph was obtained by taking the derivative of the results found
in Fig. 2.15. The dashed line is the ideal acceleration with only 29 Fourier
components kept, and the thick line is the resulting acceleration profile. From
this graph, the acceleration is seen to change by 80% of the total within 220 ns.
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Figure 2.17: A typical detection efficiency envelope of the freezing molasses.
The horzontal scale denotes the distance from the center of the MOT. The
line represents a gaussian fit which was then used to scale the one dimensional
lineshapes before the accelerated peaks were integrated and the survival prob-
ability was determined.

2.4 Detection and measurement

As was described in Section 2.1, after the free drift the resonant light was

turned on to produce a viscous, optical molasses that halted the ballistic mo-

tion of the atoms and provide spontaneously scattered resonant light for detec-

tion. The determination of the survival probability of the fundamental band

was accomplished by dividing the integrated fluorescence of the survivor peak

by the total fluorescence for the two accelerated peaks.

Although the atomic cloud expansion in the optical molasses can be

made (with a careful optical alignment and a balancing of the beam inten-

sities) to be spherically symmetric and slow compared to the exposure time,
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the MOT beams have a Gaussian profile with a finite size (typically 2 cm

in diameter). For this reason, the molasses intensity decreases with the dis-

tance from the center of the chamber, and therefore the atomic fluorescence

will also decrease. In order to correct for this position-dependent fluorescence,

we imaged the atoms with the largest intensity possible (trying to reach the

saturation intensity across the cloud), and we characterized the fluorescence

as a function of position. This characterization was done by launching a cer-

tain fraction of the atoms to a particular velocity so that it would travel to a

particular position during a fixed drift time and then recording the integrated

flourescence normalized by the fluorescence of the subset not accelerated. The

fixed drift time insured that the launched subset was the same size for each

measurement, and the normalization reduced the error introduced by shot-to-

shot fluctuations in the total number of atoms loaded in the MOT. In this way,

we obtained an empirical measure of the detection efficiency averaged over the

size of a small launched distribution. The one-dimensional fluorescent profiles

were then scaled by this function before the integration of the peaks and the

determination of the survival probability. An example of a typical detection

efficiency envelope is shown in Fig. 2.17.

Since the survival probability information is contained in the velocity

distribution of the ensemble, other methods for velocimetry could have been

used. The group of Christophe Salomon in Paris studying optical lattices used

Doppler shifts of stimulated Raman transitions for velocity detection [22, 37].

This method has a high detection efficiency and a subrecoil velocity resolution;

however, it is complicated to implement and only a single velocity class can be

measured at a time, not the entire distribution. The method of recoil induced

resonances provides information about the entire distribution but has a much

lower quantum efficiency [38].



Chapter 3

The time-independent cosine potential

In this chapter we consider the behavior of atoms in the presence of a one-

dimensional time-independent optical lattice. We will first review some results

of the theoretical study of the cosine potential and then present the experimen-

tal measurements of the energy distribution and the spectral characteristics of

this system.

3.1 Transformation to scaled quantities

Throughout this dissertation, every physical quantity will be measured either

in MKS units or in “natural units.” It will be clear, or made so, which units are

being used in each situation. The reason for this seemingly schizophrenic prac-

tice is that experimental measurements are usually made in MKS units, while

expressing quantities such as momentum or position in natural units greatly

simplifies the notation and facilitates the formulation of computer simulations

[39, 30] as well as the analytic, mathematical analysis. Moreover, the natural

units reflect the natural scales of the system.

We start with the effective Hamiltonian, defined in Chapter 1,

Hlab(x, p) =
p2

2M
− V0 cos(2kLx), (3.1)

and we define our new units by the following relationships. The parameters

measured in MKS are unprimed and their counterpart measured in the natural

43
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units are primed:

H ′ =
H

Eu
(3.2)

V ′
0 =

V0

Eu
(3.3)

t′ =
t

tu
(3.4)

p′ =
p

pu
(3.5)

x′ =
x

xu
, (3.6)

where

Eu = 8h̄ωr = h · 200 kHz (3.7)

tu = (8ωr)
−1 = 0.795µs (3.8)

pu = 2h̄kL = M · 0.0589 m/s (3.9)

xu = (2kL)−1 = 47 nm. (3.10)

The unit of momentum 2h̄kL is twice the momentum of a single photon, and

1/2kL is the periodicity of the potential l divided by 2π. The recoil energy

h̄ωr is defined as the kinetic energy of an atom moving with the momentum

imparted to it by the emission of a single photon of resonant light,

ωr =
h̄kL

2

2M
= 2π · 25.003 kHz, (3.11)

where kL = 2π/λ, and M is the atomic mass. Another useful quantity is the

scaling for an acceleration, defined by

a′ =
a

au
(3.12)

au = xu/tu
2 =

47nm

0.795µs2 = 74.0357 km/s2. (3.13)

With this change of units, the Hamiltonian of Eq. (3.1) becomes, after drop-

ping the primes,

H(x, p) =
p2

2
− V0 cos(x), (3.14)
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and the Schrödinger equation becomes

i
∂

∂t
|ψ〉 = H|ψ〉, (3.15)

where the commutator is now

[x, p] = i. (3.16)
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3.2 Classical treatment: the pendulum

For the low temperatures achieved with laser cooling the atoms are moving at

only a few recoil velocities so that their de Broglie wavelength is on the order of

the lattice periodicity π/kL. If an atom is moving at a velocity corresponding

to N double photon recoils then

λdB = h/p = h/2Nh̄kL = l/N (3.17)

Roughly speaking, when the particle has a de Broglie wavelength that is large

compared with the feature size of the potential, it can no longer be approx-

imated as a classical particle and its wavelike nature will become apparent.

Although the atoms are moving slowly and therefore must be treated quan-

tum mechanically, it is nonetheless useful to recall the results of a classical

treatment of this problem.

We take Eq. (3.14)

H(x, p) =
p2

2
− V0 cos(x) (3.18)

and apply Hamilton’s equations, with the result

ṗ = −∂H

∂x
= −V0 sin(x) (3.19)

ẋ =
∂H

∂p
= p. (3.20)

These equations can be rewritten as the second order differential equation

ẍ + V0 sin(x) = 0. (3.21)

This equation is equivalent to the equation of motion for a pendulum. It

should be noted here that it is precisely this mathematical equivalence that has

allowed the experimental realization of the δ-kicked rotor, a paradigm system

for the study of quantum chaos [40, 41, 42]. At first it might seem that a



47

particle moving linearly in a periodic potential is fundamentally different from

a rotor since, unlike the particle, a rotor is precisely where it started after a

rotation of 2π. However, this difference is dissolved once we define a winding

number for the rotor. For the quantum rotor, there exists no mechanism

which would break the aforementioned symmetry, and therefore the situation

is slightly different (see Section 3.3).

Since the Hamiltonian is independent of time, the total energy of the

system is a constant and the system will move in phase space along paths of

constant E. Solving Eq. (3.18) with H = E for p, we have

p = ±
√

2[E + V0 cos(x)]. (3.22)

A plot of the phase portrait is shown in Fig 3.1. For E < V0 the motion

is oscillatory in x and bounded between ±xtp where

cos(xtp) = −E

V0
. (3.23)

For small values of E, the amplitude of the excursion xtp is small, and we can

approximate sin(x) with just x. In this case, we have a harmonic oscillator

ẍ(t) + V0x(t) = 0 (3.24)

with a frequency

νHO =

√
V0

2π
. (3.25)

Typically, our experiments were performed with well depths on the order of

V0 = 0.4, which gives a frequency of νHO = 0.1. Remembering from Section 3.1

that our unit of time is tu = 0.795µs, we find that νHO is approximately

130 kHz in this regime.
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Figure 3.1: Phase portrait for a classical pendulum. The contours shown are

trajectories of constant energy, given by the relation p = ±
√

2[E + V0 cos(x)].
This portrait, like the potential, is periodic in x but not in p.
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3.3 The quantum pendulum: Mathieu’s equation

The problem of finding the energy eigenstates of H, solving H|ψ〉 = E|ψ〉,
is simply Mathieu’s equation, whose properties and solutions can be found in

most handbooks of mathematical functions [43]. We take Eq. (3.14) and, to

help with the identification, we invert (V0 → −V0) and shift the potential so

that the minima are at zero. Then, the Schrödinger equation becomes
[
1

2

∂2

∂x2 + (E − V0) − V0 cos(x)

]

y(x) = 0, (3.26)

where we have taken

〈x|ψ(x, t)〉 = e−iEty(x). (3.27)

By making the identifications

a = 8(E − V0) (3.28)

q = 4V0 (3.29)

2z = x, (3.30)

Eq. (3.26) can be written in the “canonical form” cited by Abramowitz and

Stegun [43]:
∂2y

∂z2 + (a − 2q cos 2z)y = 0. (3.31)

As will be shown in Section 3.5 the solutions y(x) have the form

y(z) = eikzw(z) (3.32)

where w(z) is π periodic. Mathematica has in its library of mathematical

functions a set of routines (for example MathieuCharacteristicA) for cal-

culating the characteristic values a (which correspond to the energies) for a

given characteristic exponent k and well depth q [44]. Using these routines,

the dispersion curves (the energy a versus the exponent k) and the band edges

(the energy evaluated at the band edge k/kL = ±1 as a function of the well
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depth q) are calculated and plotted in Figs. 3.2 and 3.3. For comparison with

the real potential

V (x) = cos(2kLx) (3.33)

the quasimomentum k is displayed in units of kL.

From Fig. 3.2 one can see that the allowed energy bands approach the

linearly spaced harmonic-oscillator states in the limit of large well depth. Al-

though we have here at our disposal the solutions to the time-independent

problem, we will nevertheless develop the approach to calculating these solu-

tions in Section 3.7 since this will elucidate the structure of these solutions

and will prove useful when we consider the time-dependent problems of the

following chapters.

3.4 The linear periodic potential and the quantum rotor

Although a classical particle moving linearly in a periodic potential is not fun-

damentally different from a classical rotor, the situation in quantum mechanics

is notably different. The fact that there is no mechanism which breaks the

rotational peroidicity, that a rotor is precisely where it started after a rotation

by 2π, leads to a discrete point set p-space for the rotor. More specifically, the

condition

ψ(x) = ψ(x + 2π) (3.34)

forces a quantization condition of the characteristic exponent k appearing in

the solutions Eq. (3.32)

k = 0,±1,±2, . . . (3.35)

while for the optical lattice, the range of k is continuous. In both cases, the

potential only couples states on a momentum ladder where the ladder spacing

is 2kL; however, for the optical lattice, there are many momentum ladders

while for the rotor there is only one, centered at p = 0. As was mentioned



51

0 100 200 300 400 500
0

200

400

600

800

en
er

gy
/h

 [k
H

z]

well depth/h [kHz]

Figure 3.2: Using Mathematica’s built-in routine for finding the characteristic
values of Mathieu’s equation, the band edges are calculated and plotted as a
function of the well depth V0. To facilitate the use of this figure with experi-
mental quantites, both axes are scaled by h so that they appear in units of s−1.
The bands of allowed energies are colored grey and the band gaps are white.
The dotted line represents the top of the well at 2V0. Notice that the average
spacing between bands approaches a linear (harmonic oscillator) spacing in
the limit of large well depth
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Figure 3.3: Using Mathematica’s built-in routine for finding the characteristic
values of Mathieu’s equation, the energy as a function of k is calculated and
plotted in the first Brillouin zone, for a well depth of V0 = 0.2 = h · 40kHz.
For an optical lattice, cos(2kLx), the first Brillouin zone extends from −kL to
+kL.
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earlier, the δ-kicked rotor has been experimentally realized and studied using

a pulsed optical lattice [40, 41, 42, 45]. Since all values of k are admitted

for the optical lattice, the quantum resonances observed by Moore et al. in

the optical lattice realization for the quantum δ-kicked rotor possessed a very

different signature than that predicted for states restricted to lie just on the

ladder centered at p = 0 [45].
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3.5 Bloch’s Analysis

In his seminal paper on the theory of electronic motion in crystals, Felix Bloch

presented a number of fundamental results pertaining to a general periodic

potential [11]. The first result, the so-called “Bloch’s theorem”, states that if

ψ is a solution of the time-independent Schrödinger equation with a periodic

potential V (x) = V (x + a), then ψ can be written as a plane wave times a

function with the same periodicity as V . This theorem, which was proved in

three dimensions, is equivalent to Floquet’s theorem concerning the solution

of periodic differential equations in one dimension presented in 1883 [46].

3.5.1 Bloch’s Theorem

We present here a proof of Bloch’s theorem in one dimension, which is useful for

understanding the form of solutions for spatially periodic as well as temporally

periodic potentials, as we will see in Chapter 4.

First, we define a translation operator Ta such that

Taψ(x) = ψ(x + a). (3.36)

Now, we apply Ta to the Schrödinger equation.

Ta

(
p2

2M
+ V (x)

)

ψ = Ta(Eψ) (3.37)

Since the potential is periodic (with period a) and the momentum is unchanged

by a shift in the coordinates, H is unchanged by the application of Ta, and

Eq. (3.37) becomes

(
p2

2M
+ V (x)

)

(Taψ) = E (Taψ) (3.38)

Thus, if ψ is a solution (an eigenvector of H) then so is Taψ. Moreover, it

has the same eigenvalue E, and therefore Ta and H must have simultaneous
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eigenvalues. Let λ be the eigenvalue of Ta

Taψ(x) = λψ(x) = ψ(x + a). (3.39)

Now we multiply both sides of (3.39) by e−iK(x+a)

e−iKxe−iKaλψ(x) = e−iK(x+a)ψ(x + a) (3.40)

and choose K so that λe−iKa = 1. Here |λ|2 = 1 since Ta is unitary. Then we

have

e−iKxψ(x) = e−iK(x+a)ψ(x + a) ≡ uK(x), (3.41)

where we see that uK(x) is a periodic and, by definition,

ψ(x) = eiKxuK(x). (3.42)

From this result, we see that Ka is defined up to an integer multiple of 2π. If

we let K = k + 2π
a n then we can write Eq. (3.42) as

ψ(x) = eikxun,k(x), (3.43)

where un,k(x) is still an a-periodic function and the quasimomentum k is now

restricted to the interval [π/a,−π/a]. The functions un,k(x) are real and sym-

metric, as we shall see in Section 3.7.

3.5.2 Properties of Bloch states

In addition to showing the form of the solutions for a periodic potential (re-

ferred to as Bloch states), Bloch also showed that these solutions had a number

of interesting properties. Many of his results were later reviewed and proved in

general by Jones and Zener [13]. A thorough discussion of this subject is pro-

vided by Ashcroft and Mermin [47]. We list here a few of the most important

properties of the Bloch states.
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Symmetries of Bloch states

As we saw in Section 3.5.1, Bloch states have the form

ψn,k(x) = 〈x|n, k〉 = eikxun,k(x), (3.44)

where n is a discrete band index and the quasimomentum k is a continuous

variable. These states are energy eigenstates satisfying

H0|n, k〉 = En(k)|n, k〉, (3.45)

where

|n, k + 2π/a〉 = |n, k〉 (3.46)

En(k + 2π/a) = En(k). (3.47)

The Bloch states have the additional property [13]

ψ∗
n,k(x) = ψn,−k(x). (3.48)

Because of this redundancy, k is typically restricted to one Brillouin zone

k ∈ [π/a,−π/a] where the end points of this interval are equivalent. These

functions are orthogonal,
∫ +∞

−∞
ψn′,k′ψn,k dx ∝ 1

2π
δ(k′ − k)δn′,n, (3.49)

and usually taken to be normalized over a unit cell so that
∫ +a/2

−a/2
ψn′,kψn,k dx = δn′,n. (3.50)

Velocity of a Bloch particle

Another property of interest is the average velocity of a particle in a Bloch

state ψn,k. It was first shown by Bloch and then proved in general by Jones

and Zener that this quantity is related to the energy of the state by

〈vn(k)〉 =
1

h̄

∂En(k)

∂k
. (3.51)
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This result is remarkable in that it is identical to that for a free particle, re-

membering that h̄k is the momentum. It also implies that there exist states

whose energy is well below the potential energy maxima; these states would

therefore be bound classically but quantum mechanically would move ballisti-

cally without any change in their mean velocity. This phenomenon, known as

Bloch tunneling, will be discussed in the following section.

The original derivation of Eq. (3.51) was performed in three dimensions;

however, for simplicity we will restrict our attention to the one-dimensional

case [11, 13]. The velocity is defined as the time derivative of the expectation of

the position, and it can be shown that this is equal to the integrated probability

current divided by the normalization of the state provided that ψ “vanish

sufficiently fast at infinity” [48]. We have then

〈vn(k)〉 =
d

dt
〈x〉 =

∫
j dx

/∫
ρ dx (3.52)

where the probability current j and the probability density ρ are given by

j =
h̄

2Mi

[

ψ∗ ∂

∂x
ψ − ψ

∂

∂x
ψ∗

]

(3.53)

ρ = ψ∗ψ. (3.54)

Implicit in this use of the expectation value of x as well as the relationship

between the velocity and probability current is the assumption that ψ is nor-

malizable. Strictly speaking, a Bloch wave function or even a simple plane

wave violates this condition. It is therefore assumed that the Bloch wave

function is the limiting form of a finite but broad wave packet. This point is

relevant since much of the controversy regarding the theoretical prediction of

the Wannier-Stark ladder was related to the use of the Born-von Karman pe-

riodic boundary conditions, a device employed to justify the use of plane-wave

functions for finite crystals. These issues are addressed in Chapter 5. Follow-

ing Jones and Zener we prove Eq. (3.51) by first differentiating the Schrödinger
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equation with respect to k. To simplify the notation, we define the operator

Lk

Lk =
p2

2M
+ Ek − V. (3.55)

Differentiating Lkψk = 0 with respect to k gives

∂Ek

∂k
ψk + Lk(ix)ψk + Lk

[

eikx∂uk

∂k

]

= 0, (3.56)

where we are suppressing the band index n. The second term is

Lk(ix)ψk = ixLkψk + [Lk, ix]ψk (3.57)

=
ih̄2

M

∂

∂x
ψk, (3.58)

where we have used that Lkψk = 0. If we now premultiply by ψ∗
k and integrate

over one lattice period, we have

∂Ek

∂k

∫ a/2

−a/2
ψ∗

kψk dx +
ih̄2

M

∫ a/2

−a/2
ψ∗

k

∂

∂x
ψk dx +

∫ a/2

−a/2
ψ∗

kLk

[

eikx∂uk

∂k

]

dx = 0,

(3.59)

where we integrate by parts the last term twice to obtain

∫
ψ∗

kLk

[

eikx∂uk

∂k

]

dx =
∫ [

eikx∂uk

∂k

]

Lkψ
∗
k dx. (3.60)

The boundary terms vanish because the integrands are periodic over the in-

terval of integration. Since Lk is a real operator, Lkψ∗
k = 0, and therefore this

last term vanishes identically. Finally, the second term of Eq. (3.59) can be

shown using integration by parts to be equivalent to the current:

∫
ψ∗

k

∂

∂x
ψk dx =

1

2

∫ (

ψ∗
k

∂

∂x
ψk − ψk

∂

∂x
ψ∗

k

)

dx. (3.61)

Using this relation, we have finally the desired result

∂Ek

∂k
= h̄

∫ a/2

−a/2
j(x) dx

/∫ a/2

−a/2
ρ(x) dx (3.62)
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for which Eq. (3.51) is an immediate consequence, since both of these inte-

grands are periodic over the range of integration. In fact, the current is inde-

pendent of x. This is because the Bloch wave functions are stationary states
∂ρ
∂t = 0. The generalized, three-dimensional probability density and current

satisfy a continuity equation of the form

∂ρ

∂t
+ ∇ · j = 0. (3.63)

Therefore, a general, one-dimensional stationary state has a constant current

independent of position.

Bloch Tunneling

As was mentioned before, an immediate consequence of Eq. (3.51) is that

there exist states whose energy is well below the potential energy maxima and

therefore would be bound classically but which propagate forever without any

change in their mean velocity. This behavior results in a phenomenon known

as Bloch tunneling, the ballistic spreading of an initially localized wave packet.

It is well known that the peak of a spatially localized, Gaussian wave

packet in free space will move at the group velocity, and its width will grow

linearly in time according to

(∆x)2
t = (∆x)2

0

[

1 +
h̄2t2

4(∆x)4
0M2

]

, (3.64)

so that for long times and/or small initial widths,

(∆x)t / t
∆p

M
= t∆v, (3.65)

where we have assumed an initially minimum uncertainty initial wave packet:

(∆x)0(∆p)0 =
h̄

2
. (3.66)
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Since we saw in Section 3.5.2 that each Bloch state evolves essentially as a free

particle with an associated average velocity given by Eq. (3.51),

〈vn(k)〉 =
1

h̄

∂En(k)

∂k
, (3.67)

a localized superposition of Bloch states will also spread in x according to

Eq. (3.65). The only difference between the free particle case and this case

is the form of Ek. From Fig. 3.2 it is clear that the widths of the bands all

decrease monotonically with increasing V0. In the limit of large well depth V0,

the states at the bottom of the potential are localized, experiencing only the

quadratic term of the cosine. The bands are flattened out into discrete har-

monic oscillator-like states. In this limit, vk clearly approaches zero. However,

in the limit of shallow well depth the bands essentially follow the free particle

energies deviating only at the band edges and as a result, an initially localized

wave packet will spread ballistically. This phenomenon of Bloch tunneling is

intimately related to the the width (and curvature) of the band, which gives

a measure of the effective lifetime of a localized wave packet.

To obtain an estimate of the rate of spreading in the shallow-well-depth

limit, we can approximate the dispersion curve with the quadratic, free-particle

energy. In Section 3.7.1 we find that this approximation is valid to second

order in V0 except at the band edges where a gap proportional to V0 forms.

A minimum-uncertainty wave packet prepared in the first band of an optical

lattice would have a width in momentum of

∆p = 2h̄kL (3.68)

where

∆p∆x = h̄/2. (3.69)

This wave packet would spread according to Eq. (3.65) at a rate given by the

double-photon-recoil velocity (see Section 3.1)

∆v =
2h̄kL

M
= pu/M = 0.0589 m/s. (3.70)
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The wave packet spreading expressed in units of the lattice period π/kL =

294.5 nm is

(∆x)t = 200 periods/ms. (3.71)

Although the amount of spreading during one millisecond corresponds to an

increase of 2500 from the initial size, the final width is still quite small, only

59 µm. Observing such spreading would have been difficult in our system since

our interaction times were limited to about 1 ms, and our spatial resolution was

63 µm. Aside from direct imaging, there exist other methods for measuring

the position spread of an atomic wave packet. One method relies on the fat

that the Bragg scattering cross section depends on the atomic position spread,

referred to as the Debye-Waller factor [49].

Response of a Bloch particle to a uniform field: Bloch oscillations

In addition to investigating the strictly periodic potential, Bloch considered the

response of an electron in a lattice to the application of an external, uniform

electric field. Since the field breaks the symmetry of the potential, the Bloch

wave functions are no longer eigenstates. Nevertheless, one can still use them

as a basis set, and it can be shown that the effect of the external field is to

produce a translation in k of constant velocity. This result was proved by Bloch

in the tight-binding limit and then proved in general by Jones and Zener, given

that transitions to higher bands are negligible. A striking consequence of this

result is that particles are predicted to oscillate in space rather than conduct

(accelerate uniformly) in response to the external field. Since Ek is periodic

in k, the velocity is also periodic, and a constant translation of k produces a

time-dependent oscillation of the velocity. These oscillations, termed “Bloch

oscillations,” and their spectral signature, called the “Wannier-Stark ladder,”

are the subject of Chapter 5.
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The wave equation for a Bloch particle in a uniform field is

ih̄
∂

∂t
Ψ = (H0 − Fx)Ψ, (3.72)

where H0 is the unperturbed, 2π-periodic Hamiltonian. We write Ψ as a linear

superposition of Bloch states,

Ψ =
∑

n

∫ π/a

−π/a
gn(k, t)ψn,k dk, (3.73)

where ψn,k = eikxun,k(x). What we want to show is that the function |gn(k, t)|2

satisfies the advection equation,
(

h̄
∂

∂t
+ F

∂

∂k

)

|gn(k, t)|2 = 0, (3.74)

which would mean that

|gn(k, t)|2 = G(h̄k − F t), (3.75)

where G is an arbitrary function of its argument. In this case, each piece of

the superposition in Eq. (3.73) would move through k space with a uniform

velocity F/h̄.

Following Jones and Zener we project out the evolution of one com-

ponent of Ψ by premultiplying the wave equation Eq. (3.72) by ψn′,k′ and

integrating over x. Using the orthonormal property of the Bloch functions,

Eqs. (3.50) and (3.49), as well as the fact that they are eigenstates of H0 we

have

ih̄
∂gn′(k′, t)

∂t
= En′,k′gn′(k′, t) − F 〈ψn′,k′ |x|Ψ〉. (3.76)

In the last term, the product xΨ can be cleverly rewritten as

xΨ =
∑

n

∫
dk

[

−i
∂

∂k

(
eikxug

)
+ i

∂u

∂k
eikxg + i

∂g

∂k
eikxu

]

(3.77)

where the first term is zero since ψn,k+2π/a = ψn,k. The orthogonality condition

projects out the value of the integrands at k′ and kills all but one sum over n.
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Since all the k’s are equal, we will suppress this variable, and to save ink, we

will exchange the indices n and n′. Eq. (3.76) then becomes

(

h̄
∂

∂t
+ F

∂

∂k

)

gn = −iEngn − F
∑

n′
〈un|

∂

∂k
|un′〉gn′ . (3.78)

To simplify this equation further, we will use both the fact that the eigenen-

ergies are real and the following property of the last term. By differentiating

the orthogonality condition Eq. (3.49) by k we see that

〈un|
∂

∂k
|un′〉∗ = −〈un′ | ∂

∂k
|un〉. (3.79)

Now we multiply Eq. (3.78) on the left by g∗
n and add the resulting equation

to its complex conjugate. We have
(

h̄
∂

∂t
+ F

∂

∂k

)

|gn|2 = −F
∑

n′
(Zn,n′ − Zn′,n) (3.80)

where

Zn,n′ = 〈un|
∂

∂k
|un′〉gn′g∗

n. (3.81)

If we introduce a sum over n, the right hand side vanishes and we arrive at

the advection equation
(

h̄
∂

∂t
+ F

∂

∂k

)
∑

n

|gn|2 = 0. (3.82)

If we now assume that transitions to higher bands are negligible, a particle

initially in the lowest band will remain there, and because all the gn are zero

except g1, we have finally the desired result that

|g1(k, t)|2 = G(h̄k − F t). (3.83)

where G is an arbitrary function of its argument. We note here that just as

we found for the velocity of the Bloch particle, this result, that the applied

force produces a constant translation in k, is identical to the result for a free
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particle, ṗ = F . This is because the quasimomentum k truly plays the role

of a free particle momentum in that it is the new preserved quantity resulting

from translational invariance, albeit with a discrete rather than a continuous

symmetry.

The effective mass of a Bloch particle

Although the external field dramatically modifies the behavior of the solu-

tions and the dispersion relation between E and k, Jones and Zener state that

Eq. (3.51) relating the velocity and energy of the particle is still valid. Us-

ing this relation, we can define an acceleration for a particle in band n with

quasimomentum k

a =
∂〈vn(k)〉

∂t
=

1

h̄

∂2En(k)

∂k2

∂k

∂t
, (3.84)

and knowing the force exerted by the external field we can calculate the effec-

tive mass M∗ of a Bloch particle.

M∗ = h̄2

[
∂2En(k)

∂k2

]−1

. (3.85)

Thus the effective mass M∗ depends implicitly on M through En(k).

3.6 Wannier Functions

In his analysis of the effect of homogeneous fields, Wannier introduced a com-

plimentary set of basis functions to the Bloch basis [50]. These functions,

unlike Bloch states, are normalizable over all space and are often used when

describing localized particles.

Because the Bloch functions and energies are periodic in k with period

2π/a, they can be written as a sum over lattice sites (a Fourier series) as

En(k) =
∑

l

wn(la)eikla (3.86)
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and

ψn,k(x) = ψn(x; k) =
∑

l

φn(x; la)eikla. (3.87)

Using the result from Section 3.5.1 that ψ is an eigenvector of the lattice

translation operator,

ψ(x + a) = Taψ(x) = eikaψ(x), (3.88)

it is easy to show that the functions φn only depend on the difference of the

two arguments. We rewrite Eq. (3.87) as

ψn(x; k) =
∑

l

φn(x − la)eikla. (3.89)

These functions φn(x − la) are the Wannier functions and they are the dual

functions of the Bloch states, each one containing all the information about

the nth band, in the sense that

φn(x− la) =
∫
ψn(x; k)e−ikladk. (3.90)

Additionally, it can be shown that if the Bloch function is normalized to unity

over a lattice site, then the Wannier functions are normalized to unity over all

space.
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3.7 Solving the Schrödinger equation for a time inde-
pendent cosine potential

In Section 3.5.1 we saw that the solutions of the Schrödinger equation for a

periodic potential are of the form

ψ(x) = eikxu(x), (3.91)

where k ∈ [−π/a, π/a) and u(x) = u(x+a). The dependence of the function u

on the band index n is temporarily neglected, but it will reappear naturally as

a consequence of solving the resultant eigenvalue equation. Since u is periodic,

we can write it as a Fourier series,

ψ(x) = eikx
∑

m

cmei(2πm/a)x. (3.92)

The energy of the state ψ will in general depend on the value of k as well as

the function u(x). Substituting (3.92) into the Schrödinger equation and using

our scaled Hamiltonian (3.14) (period a = 2π) we get
[
p2

2
+ V0 cos x

]
∑

m

cmei(m+k)x = E
∑

m

cmei(m+k)x, (3.93)

In order to project out one of the Fourier components of u(x) we premultiply

by 1
2πe−i(m′+k)x and integrate over x. Using the property

1

2π

∫ 2π

0
e−im′xeimxdx = δm′,m, (3.94)

where m and m′ are both integers, we get

1

2π

∫ 2π

0

∑

m

cme−i(m′+k)x



1

2

(

−i
∂

∂x

)2

+
V0

2
(eix + e−ix)



 ei(m+k)x

= Ecm′ei(m′+k)x.

(3.95)

After some algebra and suppressing the primes, we have

(m + k)2

2
cm +

V0

2
(cm+1 + cm−1) = Ecm. (3.96)
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To solve this set of equations, we fix k and solve for the eigenvalues and

eigenvectors of

Ac = Ec, (3.97)

where

Am,m =
(m + k)2

2
(3.98)

Am,m+1 = Am+1,m =
V0

2
. (3.99)

Since A is both real and symmetric, the eigenvalues and eigenvectors (the

functions un,k(x)) will also be real and symmetric. For each value of the

quasimomentum k ∈ [−1/2, 1/2) there will be many possible eigenvalues E,

all the roots of the characteristic equation

det |A −EI| = 0. (3.100)

These roots are labeled (in order) by n, which corresponds to nth band.

3.7.1 A weak periodic potential: Bragg scattering and avoided level
crossings

In this section, we will investigate the behavior of the solutions to Eq. (3.97)

in the shallow-well-depth limit. In doing so, the origin of the band gaps will

become clear, and the concept of avoided level crossings will be reviewed.

This very important concept from degenerate perturbation theory will also be

crucial in the analyses of Bloch-band suppression in Chapter 4 and tunneling

in Chapter 6.

Although this method fails when there are degenerate states, we will

nonetheless begin by following the recipe of Rayleigh-Schrödinger perturbation

theory to find the approximate solutions in the limit of small V0. We write our

Hamiltonian as a sum of the unperturbed, free particle term and the periodic

potential times the small parameter g,

H = H(0) + gV, (3.101)
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where in this case V = cos(x). The eigenenergies can then be written as a

power series in g,

En = E(0)
n + gE(1)

n + g2E(2)
n + . . . , (3.102)

where E(0)
n is the free particle energy for the unperturbed plane wave state in

the nth band

H(0)ψ(0)
n = E(0)

n ψ(0)
n =

(n + k)2

2
ei(n+k)x. (3.103)

The k index on the energies and eigenvectors is suppressed since we are solving

the Schrödinger equation for a single, fixed value of k. The first- and second-

order corrections to the energy are given by

E(1)
n = Vn,n (3.104)

and

E(2)
n =

∑

m%=n

|Vn,m|2

E(0)
n − E(0)

m

(3.105)

where the matrix elements are

Vn,m = 〈ψ(0)
n | cos(x)|ψ(0)

m 〉 =
1

2
(δn,m+1 + δn,m−1). (3.106)

In general, the nth Fourier component of the potential couples states n bands

removed. In the case of a pure cosine potential, we see that the first order

correction to the energy is zero, since there is no DC term, and that there

is coupling only between neighboring bands. This feature and its relevance

to Bragg scattering will be discussed shortly. So far the results have been

reasonable; however, there is a problem with this approach when

k = −1

2
(m + n) (mod1) (3.107)

since then E(0)
n = E(0)

m and the denominator in Eq. (3.105) vanishes. If, in

addition, Vn,m 0= 0, this approach fails, and we must resort to degenerate

perturbation theory at these points in k.
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The result of coupling two degenerate states ψn and ψm is that two new

eigenstates ψ+ and ψ− are created with energies

E± = E(0) + gE(1)
± + . . . (3.108)

where

E(1)
± =

1

2

[
Vn,n + Vm,m ±

√
(Vn,n − Vm,m)2 + 4|Vn,m|2

]
. (3.109)

The first order correction to the energy includes the DC coupling as before

as well as the coupling between the two states, and it reduces to Eq. (3.104)

when Vn,m = 0. So we see that to first order in the well depth the degeneracy

is lifted by the coupling term. For the case at hand the pure cosine potential

only couples states that differ by one, so that only the degeneracies at k = ±1
2

are lifted. Using Eq. (3.106) we have that

E(1)
± = ±1

2
. (3.110)

In summary, to first order in the well depth g = V0, the bands are completely

unchanged from the free particle result except at the band edges k = ±1
2 where

a single gap of width V0 forms between the first (n = 0) and second (n = 1)

bands. From Eq. (3.109) it is clear that higher order gaps would form with a

term linear in V0 if the corresponding Fourier component of the potential were

present. However, with a pure cosine potential, each successively higher gap

forms at the next higher power of V0 so that, for example, the gap between

the second and third bands is proportional to V 2
0 . This situation is depicted

in Fig. 3.4, where the band structure is plotted for a well depth of V0 = 0.2.

Comparing this with Fig. 3.5, it is clear that the band gaps form at the points

of degeneracy.

This phenomenon, known as an “avoided level crossing,” occurs when-

ever two coupled states are degenerate at some parameter value. If the pa-

rameter is time dependent, then there are two limiting regimes for the dy-

namics. There is the slow or “adiabatic” regime in which the level crossing
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Figure 3.4: Band structure for a well depth of V0 = 0.2. The potential breaks
the degeneracy at the band edges and creates a band gap proportional to V m

0 ,
where the exponent is given by the gap number or, equivalently, the Bragg
order.
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remains avoided, and there is the fast passage regime in which the coupling

is negligible during the time that the levels are degenerate, and the crossing

is not avoided. In Chapter 6 the phenomenon of interband tunneling is un-

derstood as a non-adiabatic transition through the band gap as a result of a

time-dependent quasimomentum.

Bragg scattering

The coupling that creates the band gaps produces a time-dependent effect,

known as Bragg scattering, in which the particle’s momentum along the stand-

ing wave is inverted but its kinetic energy is conserved. Essentially, the state

of the particle oscillates between the two coupled momentum states. The con-

dition for mth order Bragg scattering is that the atomic de Broglie wavelength

projected along x be m-fold commensurate with twice the lattice periodicity

mλdB = 2a = 4π. (3.111)

This condition is clearly satisfied at the band edges k0 = (−1/2, 0, 1/2), where

λdB = h/p = 2π/(n + k0), (3.112)

and the Bragg order is

m = 2(k0 + n). (3.113)

In Fig. 3.5, the dispersion curves are plotted in the repeated zone scheme and

the Bragg conditions are circled.

The strength of the Bragg coupling is simply equal to the band gap

and determines the rate of the Pendellösung oscillations between the coupled

states. In this way, we see that a pure cosine potential is not limited to just

first-order Bragg scatterings since higher band gaps also form; however, as was

mentioned before, the strength of the mth order process scales as V m
0 . This is

because an mth order scattering requires m exchanges of two field photons. If,
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Figure 3.5: Dispersion branches plotted in the reapeated zone scheme for a van-
ishingly small V0. The branches are labeled by the band index n = 0, 1, 2 . . .,
and the points of degeneracy are circled and labeled by the corresponding
Bragg order.
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on the other hand, the potential had higher order Fourier components, then

higher order Bragg scatterings could be satisfied with just one exchange, and

these processes would then scale linearly with V0 as well.

The phenomenon of atomic beam scattering by a standing wave of light

has been studied extensively and is useful in the construction of atom interfer-

ometers [51, 52]. Moreover, repeated scatterings from a pulsed standing wave

produces dynamics equivalent to the kicked pendulum, a paradigm system for

Hamiltonian chaos. To this end, the use of this system in study of the quan-

tum signatures of chaos has created a new experimental testing ground with

a fertile past [53, 54, 45, 1, 42, 55, 40, 41] and a very bright future [56].

Another symmetry for optical lattices

In a paper by Wilkens et al. the authors pointed out that the “more obvious”

translational invariance x → x + a for an optical lattice should be amended

due to the observation that a translation by half the lattice periodicity a
2 plus

an inversion in the atomic polarization σ1 → −σ1 leaves the Hamiltonian

H =
p2

2M
− h̄δ|e〉〈e|+ 2h̄gσ1 cos(2πx/a) (3.114)

invariant [57]. The authors develop the analysis with this symmetry opera-

tor and find that the dispersion curves of allowed energies develop avoided

crossings both due to Bragg resonances and “Doppleron” resonances. The lat-

ter are velocity-tuned transitions associated with inversions of σ1. Although

the results are quite resonable, the authors neglected the issue of spontaneous

emission which would greatly complicate the observation of these coherent,

resonant effects. The detuning proposed was δ = −6ωr which is for sodium

2π · 150 KHz well within the natural linewidth Γ/2π = 9.8 MHz of the 3P3/2

state.
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3.8 An experimental study of the Bloch band spectrum

In order to probe the structure of the Bloch bands, we introduced a weak,

time-dependent modulation of the standing wave position to drive interband

transitions. The modulation of position was accomplished by introducing a

phase modulation on one of the constituent beams as described in Chapter 2.

By first preparing the atoms in the lowest band and then measuring the frac-

tion that remained after some interaction time, we observed Rabi oscillations

of the population between the first and second band as a function of the mod-

ulation amplitude and frequency [5, 58]. A relatively weak modulation was

chosen so that it would only couple but not modify the spectral features. In

Chapter 4 we study the effect of a strong AC drive on the band structure and

find that under certain conditions the bands undergo a dynamical suppression,

effectively turning off Bloch tunneling [6].

Since the modulation strictly preserves the symmetry of the lattice, it

couples states in different bands that have the same value of k. From the

rate of the Rabi oscillations for a given modulation amplitude, the matrix

elements coupling the states can be determined, and from the depth of the

oscillations, an estimate of the density of states as a function of frequency can

be made. Using this information, a fairly complete “map” of the bands can

be constructed. A complimentary study of an optical lattice band structure

was performed by Christophe Salomon’s group in Paris at ENS [37]. In this

experiment, an acceleration was imposed, resulting in a time dependent quasi-

momentum and consequently Bloch oscillations. By measuring the evolution

of the velocity of a distribution localized in k, they were able to reconstruct

the fundamental band energy using the relation Eq. (3.51).

The form of our potential with the added time-dependent modulation

was

V (x, t) = V0 cos [2kLx − δ cos(2πνt)] , (3.115)
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where ν is the modulation frequency and δ is the dimensionless modulation

amplitude. Since the amplitude is small, we expand the potential in powers of

δ, and keeping terms to first order we have

V (x, t) = V0 cos(2kLx) + V0 δ sin(2kLx) cos(2πνt). (3.116)

The stationary cosine term is recovered, and the modulation, to first order,

produces a single frequency driving term that manifestly preserves the lattice

periodicity and therefore couples states with the same value of k. Fig. 3.6

shows the energy bands in the reduced zone scheme within the first Brillouin

zone for a well depth of V0 = 0.35Eu = h ·70 kHz. As indicated in Fig. 3.6, the

drive frequency ν can be chosen to be resonant with the transition between

the first two bands (1 ↔ 2), but far from resonance for transitions between

successive bands [arrows (a) and (b)] at the same value of k. In this case,

only two eigenstates of the atoms need to be considered. For such a driven

two-level system the analytic solution is known and the population evolution

exhibits Rabi oscillations. Given that the initial state of the system is in the

lower band at some value of k, the expectation value of the state at the same

value of k in the second band evolves according to

|a2(t)|2 =
Ω2

Ω2
eff

sin2(Ωefft), (3.117)

where Ω is the on-resonant Rabi frequency and Ωeff is called the effective or

off-resonant Rabi frequency. The resonant Rabi frequency is proportional to

the matrix element of the driving term between the two coupled Bloch states,

Ω = 1/h̄ |〈Ψ0,k |V0 δ sin(2kLx)|Ψ1,k〉| , (3.118)

and the effective Rabi frequency is given by

Ωeff =

√
∆2

4
+ Ω2, (3.119)
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where the difference between the drive frequency ω = 2πν and the transition

frequency ω0 appears as ∆ = ω − ω0. In Fig 3.7 the effective Rabi frequency

Ωeff as well as the amplitude of the oscillations Ω2/Ω2
eff is plotted as a function

of the probe frequency ω and k for the transition between the band pairs:

1 ↔ 2, 2 ↔ 3 and 1 ↔ 3. It is interesting to note that the amplitude of the

1 ↔ 3 transition falls to zero at the band edges k = 0 and k = ±1
2 (not shown).

At these values, the wave function possesses the same parity in the two bands

and the overlap integral vanishes. In the deep well limit, one would expect this

selection rule to suppress all transitions to the third band from the first since

it would approach the selection rule for a harmonic oscillator, ∆n = ±1. In

order to compare this calculation with the experimentally measured population

evolution, one must average the evolution over the entire band. Each state k

will evolve with its own Rabi frequency and amplitude. If the drive frequency

is close to resonance for both 1 ↔ 2 and 2 ↔ 3 [arrow (c) in Fig. 3.6] more

than two levels participate in the interaction and more complicated dynamics

are to be expected.

3.8.1 Observation of Rabi oscillations between Bloch bands

Fig. 3.8 compares the evolution of the first band survival probability for in-

creasing modulation amplitude. The data was recorded for V0/h = 71 kHz and

ν = 70 kHz, corresponding to a drive resonant with states near the band edge

as indicated by arrow (a) in Fig. 3.6. All graphs clearly show damped Rabi

oscillations of the population in the first band. The damping can be explained

by taking off-resonant transitions into account. Atoms with a quasimomentum

close to the value for which the resonance occurs can undergo Rabi oscillations

with different frequencies and different amplitudes. Summing over the distri-

bution of quasimomenta leads to a dephasing of the oscillations and therefore

to a decrease of the oscillation amplitude. It is important to note that this
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Figure 3.6: Band structure for an atom in a far-detuned standing wave. The
energies are calculated relative to the bottom of the potential for a well depth
of V0/h = 70 kHz. In the reduced zone scheme the quasimomentum q is limited
to the first Brillouin zone [−kL, +kL]. The arrows correspond to a modulation
frequency of (a) 70 kHz, (b) 75 kHz, and (c) 85 kHz. The dashed line indicates
the top edge of the potential (2V0).
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Figure 3.7: Contours of equal Rabi frequency and amplitude as a function
of quasimomentum (abscissa) and probe frequency (ordinate) for transitions
between the three band pairs: 1 ↔ 2, 2 ↔ 3 and 1 ↔ 3. The calculations are
performed at a well depth of V0 = 0.355 and a modulation index of δ = 0.3.
The Rabi frequency associated with each contour is indicated in scaled units.
In order to convert this or any other scaled, angular frequency to hertz simply
multiply by 200 kHz (see Section 3.1).
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Figure 3.8: Measured survival probability in the lowest band as a function of
modulation duration. The modulation amplitude was set to be (a) δ = 0.1, (b)
δ = 0.2, and (c) δ = 0.3. The data were taken at a well depth of V0/h = 71 kHz
and a modulation frequency of ν = 70 kHz, corresponding to a drive near the
band edge [as indicated in Fig. 3.6, arrow (a)]. Each run was repeated several
times, and the error bar denotes the one-sigma error of the mean. The solid
line displays the fit of an exponentially damped cosine function to the data.
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damping effect is not caused by level decay, since the Bloch states involved are

stable. The plots of the survival probability in the first band in Fig. 3.8 show

an overall offset from unity at zero modulation duration. We attribute this

offset to residual phase modulation of our standing wave, caused by electronic

leakage of the modulation signal to the Marconi synthesizer, which drives tran-

sitions to higher bands. This residual modulation introduces a constant loss

independent of the chosen modulation duration and does not affect the curve

shape. Because the strength of the residual modulation depends on the set

modulation amplitude δ, the curve offset changes with increasing δ.

As is evident from Fig. 3.8, the frequency of the Rabi oscillation in-

creased with modulation amplitude. By fitting an exponentially damped co-

sine function to the experimental data, the value for the oscillation frequency

can be extracted. The solid squares in Fig. 3.9 show the result of the least-

square fits. The error bars denote the uncertainty in the frequency fitting

parameter. The plot in Fig. 3.9 shows a Rabi frequency that varies linearly

with the modulation amplitude δ. As was discussed above, one expects this

linear relationship for the case of exact resonance. To compare to the exper-

imental data we calculated the Rabi oscillation frequency for a modulation

that drives transitions only at the band edge (i.e. we calculated Ω at k = 1
2).

Although 70 kHz is not precisely at the band edge, our assumption is that

the matrix element at the edge is dominant. The resulting frequencies are

displayed as hollow dots in Fig. 3.9. The calculation results are in good over-

all agreement with the experimental data. The slight deviation in frequency

of the measured versus calculated data can be attributed to the experimental

uncertainty in the determination of the well depth V0. As described in Chap-

ter 2, we can measure the intensity of the interaction beams to within ±10%,

leading to the same relative error in the value for the well depth. To check

the validity of restricting the range of quasimomenta to the band edge, we
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ulation amplitude for a well depth of V0/h = 71 kHz and a drive frequency of
ν = 70 kHz. Uncertainties in the least square fit of the frequency are indicated
as error bars. The line depicts the result of a linear least square fit through
the experimental data. The hollow dots are the calculated Rabi frequencies
for a drive at the band edge corresponding to the experimental parameters.
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performed a numerical integration of Schrödinger’s equation including the full

potential in Eq. (3.115) with an initial condition that was taken to be a uni-

form distribution of atoms in the first band. The frequencies of the resulting

population oscillations are not plotted in Fig. 3.9 because on the scale used

they are indistinguishable from the calculated values. The calculation and the

numerical integrations were performed using experimental values for the well

depth and drive frequency with no adjustable parameters.

Driving transitions at the band edge has several advantages, one of

which is the high density of states in that region. This situation results in a

large number of atoms that can participate in the population transfer, therefore

yielding a large detection signal. Another advantage is the slow damping rate

of the Rabi oscillations. Since there is a large fraction of atoms contributing

to the oscillation with the same frequency, the small number of off-resonantly

driven atoms will not significantly decrease the amplitude of the averaged

oscillation. Away from the band edge, however, the relative weight of the res-

onant oscillation frequency becomes less dominant and the off-resonant drives

lead to an increased damping rate. The evolution of the first band population

for three different drive frequencies is depicted in Fig. 3.10. The data were

recorded at a well depth of V0/h = 71 kHz and a modulation amplitude of

δ = 0.3. The insets show the result of the numerical integrations, for which

the well depth was adjusted to V0/h = 72 kHz in order to produce matching

damping rates. The modulation frequencies in Fig. 3.10(a) through (c) match

the corresponding arrows in Fig. 3.6 [(a) 70 kHz, (b) 75 kHz and (c) 85 kHz].

Larger damping rates for increasing modulation frequencies are clearly visi-

ble. In addition, we observed a decrease in oscillation amplitudes due to a

smaller density of states at the center of the band. At the opposite side of

the energy band, lower damping rates are recovered. Modulating the potential

with frequencies beyond the band edges lead to Rabi oscillations with higher
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Figure 3.10: Measured survival probability in the lowest band as a function
of modulation duration for three different frequencies. All data were recorded
at a well depth of V0/h = 71 kHz and a modulation amplitude of δ = 0.3.
The points are connected by solid lines for clarity. The insets show the result
of numerical simulations at V0/h = 72 kHz and δ = 0.3. Note that the
modulation duration does not include the 16 µs turn-on and turn-off time.
The modulation frequency was set to be (a) ν = 70 kHz, (b) ν = 75 kHz, and
(c) ν = 85 kHz, corresponding to drives indicated by the arrows in Fig. 3.6
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frequency and lower amplitude, as expected for off-resonantly driven systems

(not shown).



Chapter 4

Dynamical Bloch band suppression

4.1 Introduction

In Chapter 3 we considered the behavior of particles in the presence of a

time-independent cosine potential and saw that the energy distributions are

characterized by bands of allowed energies separated by band gaps. The cor-

responding eigenstates are delocalized Bloch states that are freely propagating

and hence result in Bloch tunneling. In this chapter, we examine the resultant

behavior when a single frequency AC field is added to the periodic potential.

The original analysis of this problem in the context of electronic motion in

crystals was carried out by Dunlap and Kenkre, who showed that the system

could be driven into an insulating state by the application of an AC electric

field [59]. Specifically, they showed that in the tight-binding approximation,

the mean squared displacement of the wave function becomes bounded for a

particular choice of the AC field strength and frequency. Associated with this

phenomenon of “dynamical localization” (not to be confused with dynamical

localization in quantum chaos) is a collapse of the Bloch band widths [60, 61].

A great deal of complimentary experimental work was done with superlattices

[62]. However, this phenomenon is obscured in these systems by multi-photon

assisted tunneling and can only be inferred from a suppression of the con-

ductance at low field strengths [63, 64]. In this experiment, we observed the

evolution of the quasienergy band spectrum from the wide unperturbed case

85



86

to a flattened but splintered band at the condition for band collapse [6].

4.2 Single band calculation

The origin of band suppression is most easily seen in a calculation using the

single band approximation, where one can derive an analytic result for the

dispersion. We provide here the results of this calculation done by Zhao [61].

He begins with the Hamiltonian

H(x, t) = H0(x) − Fx cos(ωt), (4.1)

where H0 is the field-free, spatially periodic part. Since the full Hamiltonian

is periodic in time with period T = 2π/ω, one knows from Floquet’s theorem

(see Section 3.5.1) that the solutions will be of the form

ψ(x, t) = e−iεtuε(x, t), (4.2)

where

uε(x, t) = uε(x, t + T ). (4.3)

Since the Hamiltonian is time-dependent, the energy is no longer conserved;

however, because the time dependence is periodic, there is a conserved quan-

tity ε that is associated with the energy, and it is typically referred to as

the quasienergy, in analogy with the quasimomentum for spatially periodic

solutions. The functions uε(x, t) satisfy the Schrödinger equation

[

H(x, t) − ih̄
∂

∂t

]

uε(x, t) = εuε(x, t). (4.4)

By writing this wave function as a linear superposition of single-band Wannier

functions (see Section 3.6)

uε(x, t) =
∑

l

uεlφ(x − la), (4.5)



87

where the sum is over lattice sites, Zhao finds that the amplitudes satisfy

ih̄
d

dt
uεl =

∑

j

Rjuε(j+l) − [ε + laF cos(ωt)]uεl (4.6)

where Rj is the hopping term given by the matrix element

Rj = 〈0|H0|j〉 =
∫ ∞

−∞
φ∗(x)H0φ(x − ja). (4.7)

After employing a discrete Fourier transform to obtain the equations in recip-

rocal space, Zhao solves for the quasienergy

ε(k) = R0 + 2
∞∑

l=1

RlJ0(laF/h̄ω) cos(lk), (4.8)

where J0 is the ordinary Bessel function of order zero. In the limit that F → 0

this reduces to the result for the undriven system,

ε(k) = R0 + 2
∞∑

l=1

Rl cos(lk). (4.9)

We note that in analogy with spatially periodic solutions, where the energies

are periodic in k (ε(k) = ε(k + 2π/a)), the energies are repeated at integer

multiples of the drive frequency ω = 2π/T . There is an associated quasienergy

Brillouin zone (−π/T, π/T ) as well. From Eq. (4.8) we see that the temporal

modulation produces an effective hopping term

Reff
l = RlJ0(laF/h̄ω). (4.10)

When only nearest-neighbor interactions are counted, one term in the sum is

kept and Eq. (4.8) reduces to

ε(k) = R0 + 2Reff
1 J0(aF/h̄ω) cos(k). (4.11)

Therefore, when the argument is a root of J0,

J0(aF/h̄ω) = 0, (4.12)
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the dispersion “collapses” to a constant value R0, the on-site energy. If the

other terms are kept, the band width is suppressed as F is increased but does

not collapse to zero since there is no value of aF/h̄ω for which all of the terms in

the sum of Eq. (4.8) are zero. In Fig. 4.1, Eq. (4.8) is plotted for several values

of aF/h̄ω. The values of Rl were not calculated but rather were extracted

from the Fourier decomposition of the bands as calculated in Section 3.3.

In Chapter 3, we saw that the spreading of an initially localized wave

packet is due to Bloch tunneling, and the band width is indicative of the

lifetime of this localized state. Associated with the suppression of the band

widths is then a suppression of Bloch tunneling, and it was shown by Dunlap

and Kenkre that in the tight-binding case the mean-squared displacement of

the wave function is bounded at the band collapse condition.

4.3 Observation of Bloch band suppression

To experimentally realize the external AC field, a phase modulation was im-

posed on one of the standing wave component fields, producing a sinusoidal

variation in the position of the optical lattice. In the lab frame, the potential

has the form V0 cos[2kLx + λs sin(ωst)] where λs and ωs are the modulation

index and frequency. In the co-moving frame of the lattice, the Hamiltonian

has the form

Hlatt =
p2

2M
+ V0 cos(2kLx) + x

Mλsωs
2

2kL
sin(ωst), (4.13)

where the mass of the atom M appears, revealing the inertial origin of this

term. In this case the amplitude of the AC force is

F = Mλsωs
2/2kL, (4.14)

and the lattice periodicity is

a = π/kL. (4.15)
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Figure 4.1: The single band quasienergies for the second band plotted as a
function of k at four different values of aF/h̄ω. In (a)-(d) the values of this
ratio were 0, 1.25, 2.38, and 3.14. Plot (a) is the unperturbed band. As this
ratio is increased, the band width shrinks and in (d) reaches a minimum when
equal to a root of J0.



90

Inserting this into Eq. (4.12) the condition for band suppression becomes

J0

(
2πλs

ωs

8ωr

)
= 0 (4.16)

where ωr is the recoil frequency given by Eq. (3.11).

As was done in Chapter 3 to observe the spectral characteristics of this

system we introduced an additional weak modulation that could resonantly

drive transitions between states of the potential without significantly modify-

ing their energies. By preparing the atoms in the first band and measuring

the depletion of its population as a function of the probe frequency, a spec-

trum was obtained. Both the strong and weak phase modulations were turned

on smoothly during 16 µs to avoid phase jumps that could drive transitions

between bands. The total time that the atoms were exposed to the phase mod-

ulations was 500 µs. For each spectrum, the strong drive amplitude was fixed,

and the probe modulation frequency was scanned in the range (50–200) kHz.

The modulation index of the weak probe was λs = 0.05. In order that the

strong drive only modify the band structure without driving transitions, its

frequency was chosen to be ωs/2π = 20 kHz, far less than the width of the

first band gap.

Fig. 4.2 shows a series of measured spectra for various AC field strengths.

When there is no strong field present (λs = 0) we obtain a spectrum of the

unperturbed Bloch band structure (Fig. 4.2a). Although the spectrum maps

the transition from the first to second band (1 ↔ 2), the spectrum width rep-

resents that of the second band since, for the chosen well depth, the first band

is only 3 kHz wide. As the modulation strength is increased, the second band

flattens and side peaks spaced at multiples of the strong field frequency grow

in size. For a modulation index of λs = 3.8, the condition for band collapse is

fulfilled. For this case, the central peak is at its narrowest, with a half width

of approximately 15 kHz. As the modulation index is increased past the band
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Figure 4.2: Measured survival probability in the lowest band as a function of
probe frequency for six different strong field modulation strengths. In (a)-(f)
the values for λs were 0, 1, 2, 3.8, 4.3, and 5. Spectrum (a) corresponding to
the unperturbed Bloch band, and spectrum (d) corresponding to the system at
the band collapse condition. The side peaks that develop are separated by the
strong AC modulation frequency (20 kHz), and correspond to multi-photon
transitions. Each point is an average of several runs, and the error bar denotes
the one-sigma error of the mean.
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collapse condition, the central peak broadens and the previously distinct side

peaks overlap producing broad tails on the central resonance.

Mirror vibration and frequency instabilities of our electronic drivers

caused a low frequency fluctuation of the standing wave position that excited

atoms out of the lowest band at a constant rate. This loss, which was constant

for each run, resulted in a background of lost atoms and prevented the survival

probability from approaching unity even when the probe was far from reso-

nance. An additional complication arose from the fact that although the strong

AC modulation frequency was far from resonance for the (1 ↔ 2) transition,

its amplitude was nevertheless large enough to drive off-resonant transitions.

This explains the drop of the baseline for larger values of λs.

4.4 Multi-band analysis of band suppression

To gain further insight into the effect of higher bands on band suppression we

have solved numerically the Schrödinger equation for the quasienergies and

the corresponding wave functions, in collaboration with Professor Qian Niu

and his student Roberto Diener. In addition, the coupling strengths between

the first and higher bands for each quasienergy were calculated in order to

generate a prediction for the experimental spectral distributions of Fig. 4.2.

For convenience, we used the scaled units described in Section 3.1. A unitary

transformation of the Hamiltonian (see Appendix A) in Eq. (4.13) yields

H =
[p − λsωs cos(ωst)]2

2
+ V0 cos(x). (4.17)

In this form the spatial periodicity is preserved, and we have H(x + 2π, t) =

H(x, t) = H(x, t +T ), where T = 2π/ωs. As before, we use Floquet’s theorem

and write the wave function in the form

Ψε,k(x, t) = ei(kx−εt)uε,k(x, t), (4.18)
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where the function u is the periodic part

uε,k(x, t + T ) = uε,k(x, t) = uε,k(x + 2π, t). (4.19)

Since the function uε,k is periodic, we can expand it as a Fourier series and

write the wave function as

Ψε,k(x, t) = ei(kx−εt) ∑

n,m

cn,mei(nx−mωst). (4.20)

Inserting this expression into Schrödinger’s equation

HΨε,k = iΨ̇ε,k, (4.21)

we obtain a set of equations for the coefficients cn,m and the quasienergy ε

[
(k + n)2

2
+

λ2
sω

2
s

4
− mωs − ε]cn,m =

(k + n)
λsωs

2
(cn,m+1 + cn,m−1) −

λ2
sω

2
s

8
(cn,m+2 + cn,m−2)

+
V0

2
(cn+1,m + cn−1,m).

(4.22)

The most general representation of the spectrum is the repeated-zone scheme,

in which each quasienergy is represented by all of its possible values ε + jωs,

for integer values of j. For this reason, even if we restrict our attention to one

quasienergy brillouin zone (−ωs/2,ωs/2], we are faced with a dense spectrum

since every band has a copy inside this region. In order to interpret this

spectrum and to connect this analysis to our experimental observations, we

considered the case of transitions between these states induced by a second,

weak AC field of frequency ω. The full Hamiltonian is

H ′(t) = H(t) − pλω cos(ωt), (4.23)

where H(t) is given by Eq. (4.17) and λ 1 λs. We assume that an atom is in

the quasienergy state Ψε1,k = |1〉 corresponding to the first band and that the
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perturbation only drives transitions to one other quasienergy state Ψε2,k = |2〉
(this approximation is valid as long as the frequency ω is close to resonance).

Given the state vector of the atom, Ψ = a1|1〉+ a2|2〉, the equations of motion

for a1 and a2 are:

iȧ1 = −λω cos(ωt)[a1〈1|p|1〉 + a2〈1|p|2〉]

iȧ2 = −λω cos(ωt)[a1〈2|p|1〉 + a2〈2|p|2〉].
(4.24)

For short times the second state is not significantly populated, so that |a2| 1
|a1| ≈ 1. To lowest order, ȧ2 = −iλω cos(ωt)〈2|p|1〉. Since the quasienergy

states are not stationary the time dependence of the matrix element 〈2|p|1〉
contains many frequencies,

〈2|p|1〉 =
∑

j

ei(ε2−ε1+jωs)tΓj(k), (4.25)

where Γj(k) =
∑

n,m(k+n)c(1)
n,m(c(2)

n,m+j)
∗. Resonant transitions occur whenever

ω ≈ ±(ε2 − ε1 + j0ωs) for some value of j0. In analogy with the rotating wave

approximation, where only the nearly resonant term is kept, we approximated

the matrix element Eq. (4.25) by just one term of the sum,

〈2|p|1〉 = ei(ε2−ε1+j0ωs)tΓj0(k). (4.26)

The quasienergies were calculated numerically for the cases in which

λs = 0, 3.8, and 5.2. The values ωs = 0.10 and V0 = 0.510, corresponding

to ωs/2π = 20 kHz and V0/h = 102 kHz in real units, were chosen to match

the parameters used in the experiment. We restricted the values of ε1(k) to

the interval (−0.2,−0.1), corresponding to the location of the first band in

the absence of the strong AC field. The results, which were plotted in the

repeated-zone scheme, are shown in the left three panels of Fig. 4.3. The three

values of λs chosen correspond to (a) no strong AC field, (b) at, and (c) past

the condition for band collapse. The plot of ε2(k)+j0ωs was gray-scaled by the
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Figure 4.3: The left three panels are plots of the calculated quasienergies ver-
sus k for three values of λs (0, 3.8, and 5.2). We restricted our attention to the
energy range [0.1,0.7] which corresponds to energies accessed by our probe.
In addition, the quasienergies were plotted using a gray scale to differentiate
their on-resonant coupling strengths Γj0(k). For comparison, the single-band
approximation result is shown by the dashed line. To the right of each panel is
the experimentally measured spectrum (points with error bars) and the theo-
retical spectrum (thin line) predicted from the calculated quasienergy bands.
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value of [Γj0(k)]2, which determines the transition probability and therefore

the quasienergies that are important.

For comparison, the second band was calculated using the single band

approximation, and the result, Eq. (4.8), is plotted with dashed lines. Al-

though it does not show the detailed structure present in the spectrum, the

single-band approximation does describe the general behavior of the most

prominent quasienergies.

When λs = 0 the quasienergy spectrum is simply the real energy spec-

trum repeated with periodicity ωs. However, only one representation of each

quasienergy is present in Fig. 4.3a, since all values of Γj0(k) with j0 0= 0 are

zero. This is due to the absence of photons with frequency ωs, which are

necessary for such transitions. As λs is increased, these repetitions become

accessible, and in addition they begin to interact and develop avoided level

crossings. This effect modulates and splinters the flat and continuous disper-

sion curve predicted by the single-band model; it broadens the collapsed band,

producing a suppression in the bandwidth.

Using the calculated quasienergies and their corresponding matrix ele-

ments, we generated spectral distributions to compare with the experimental

data. Rabi oscillations are known to govern the transition probabilities be-

tween bands and have been characterized in this system [5]. In order to calcu-

late the survival probability for the first band as a function of ω, we used the

approximation Eq. (4.26) and neglected the diagonal terms in Eqs. (4.24) (the

weak probe drives transitions between bands but does not change their shape

or position). The results shown in the right panels of Fig. 4.3 were obtained by

assuming that the first band was uniformly populated. In addition, the spectra

were averaged to account for the finite Gaussian bandwidth of the weak probe

used in the experiment. There were two additional experimental effects that

had to be accounted for in order to compare the spectral distributions. The
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first effect, mentioned previously, was a baseline shift due to a constant loss

of atoms from the optical lattice. The second was a systematic underestimate

of the survival probability due to non-uniform detection of our atomic sample.

The spectra were scaled and the baselines shifted to compensate for these ef-

fects. The absolute position and shape of the resonances, which are the most

important features, are independent of these effects. The agreement between

the measured and calculated spectra is good, indicating that the approxima-

tion in Eq. (4.26) is valid and that Fig. 4.3 is a faithful representation not

only of the quasienergies but also of their respective coupling strength with

the lowest band.



Chapter 5

Bloch oscillations and the Wannier-Stark
Ladder

In this chapter we consider the behavior of atoms in a weakly accelerating

optical lattice. Since the velocity of the optical lattice is given by the frequency

difference ∆ν of the two constituent beams,

v =
λ

2
∆ν, (5.1)

a constant acceleration is achieved by linearly ramping this difference. The

resulting Hamiltonian for a general time-dependent frequency difference is

H(x, p, t) =
p2

2M
+ V0 cos(2kL[x − α(t)]), (5.2)

where α is proportional to the total accumulated phase

α(t) =
1

2kL

∫ t

0
2π∆ν(t). (5.3)

This Hamiltonian is related by a unitary transformation (see Section A.2) to

two other forms that will be used in this chapter,

H(x, p, t) =
p2

2M
+ V0 cos(2kLx) + xaM (5.4)

and

H(x, p, t) =
(p − Mv)2

2M
+ V0 cos(2kLx), (5.5)

98



99

where the acceleration a = α̈ and velocity v = α̇ of the standing wave are

controlled through this frequency difference. We will sometimes refer to the

abbreviated form

H = H0 − Fx (5.6)

where H0 is the unperturbed periodic part and F = −Ma is the inertial force

experienced by the atom. The inertial force has a negative sign since it is not

the atom but rather the reference frame which is accelerating. We note here

that this Hamiltonian is equivalent to the one that describes the motion of an

electron in a periodic electric potential with an external homogeneous electric

field.

For small enough accelerations, an atom initially in the first band will

remain there and accelerate with the lattice. In the frame of the potential,

the atom becomes bounded, no longer Bloch tunneling into adjacent sites, be-

cause the acceleration breaks the translational symmetry. In this accelerating

frame, the atom oscillates in velocity and space at the Bloch frequency and, as

a result, each band becomes subdivided into a ladder of discrete states known

as the Wannier-Stark ladder, where the the ladder spacing is proportional to

the Bloch frequency. In reality, the energies of the Wannier-Stark states are

not perfectly discrete, but have a Lorentzian shape due to their finite lifetime.

Therefore, the atoms will not indefinitely accelerate with the lattice, but will

decay out of the bound states and become free particles. This tunneling phe-

nomenon is the subject of Chapter 6.

5.1 Bloch oscillations

As was discussed in Section 3.5.2, Bloch considered the response of an elec-

tron in a lattice to the application of an external, uniform electric field, and

he showed that the effect of the external field is to produce a translation
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in the quasimomentum k with constant velocity. This prediction was con-

firmed by the analysis of Jones and Zener, who proved the result for a general

periodic potential, given that transitions to higher bands are negligible (see

Section 3.5.2). Specifically, the result is that each Bloch state retains its time-

independent form, but the quasimomentum evolves as if the particle were free

and h̄k = p:

h̄k̇ = F. (5.7)

However, h̄k 0= p and F is not the total force, but only the force due to

the external field. A striking consequence of this result is that particles are

predicted to oscillate in space rather than accelerate uniformly in response to

the external field. Since Ek is periodic in k over the first Brillouin zone, the

average velocity, which is given by

〈vn(k)〉 =
1

h̄

∂Ek

∂k
, (5.8)

is also periodic. Therefore, a constant translation of k produces a time-

dependent oscillation of the velocity with period

τB = h/|F |d, (5.9)

where d is the lattice period previously defined as a (a is now reserved for the

acceleration of the optical lattice). As a result, the position will also oscillate

with a peak-to-peak excursion of

δx = ∆/|F |, (5.10)

where ∆ is the band width. If we express this excursion in lattice periods d,

we have

δx =
∆

hνB
d. (5.11)

The picture of Bloch oscillations in reciprocal space is illustrated in

Fig. 5.1. In the case of Bloch oscillations, the acceleration is small enough
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Figure 5.1: Illustration of a particle’s motion through reciprocal space when
a force is applied to the lattice. In case (a), the acceleration producing the
motion in k is sufficiently weak that the particle reflects from the Bragg plane
at kL and emerges on the opposite side of the first Brillouin zone at −kL. In
case (b), the acceleration is so large that the particle crosses the first band gap
non-adiabatically and emerges on the opposite side of the first Brillouin zone
it in the second band. Since the successive band gaps are much smaller than
the first, the particle crosses these gaps as well, and climbs up the dispersion
curve, accelerating as a free particle would.
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that the particle reflects when it reaches the Bragg plane at kL. It will then

emerge on the opposite side of the Brillouin zone in the same band as before.

If the acceleration is too large compared to the potential coupling these two

states, then the particle will traverse the gap as if it were a free particle and

emerge in the second band. This tunneling process is the subject of Chapter 6.

5.1.1 The adiabatic approximation: a sufficiently weak acceleration

This result, that for a sufficiently weak field the Bloch states retain their time-

independent form but have a time-dependent quasimomentum, can be deduced

from the adiabatic theorem [65]. To this end, the adiabaticity criterion gives

us an indication of what is a sufficiently weak field. This condition, that the

force not induce interband transitions, is
∣∣∣∣∣

〈

ψn,k

∣∣∣∣∣
∂

∂t

∣∣∣∣∣ψn′,k

〉∣∣∣∣∣ 1 |En(k) − En′(k)|/h̄, (5.12)

where n 0= n′. This condition reduces to
∣∣∣∣∣

〈

un,k

∣∣∣∣∣
∂

∂t

∣∣∣∣∣ un′,k

〉∣∣∣∣∣ 1 |En(k) − En′(k)|/h̄, (5.13)

where we are using the form of the unperturbed Bloch states,

ψn,k = eikxun,k(x). (5.14)

Using the chain rule, we can replace the time derivative with a derivative with

respect to k and we get
∣∣∣∣∣

〈

un,k

∣∣∣∣∣
∂

∂k

∣∣∣∣∣ un′,k

〉∣∣∣∣∣ F 1 |En(k) − En′(k)|. (5.15)

By differentiating the Schrödinger equation with respect to k, it is easy to

show that
〈

un,k

∣∣∣∣∣
∂

∂k

∣∣∣∣∣ un′,k

〉

=
1

En′(k) − En(k)

[(
h̄2k

M
− ∂En

∂k

)

δn,n′ +

〈

un,k

∣∣∣∣∣
h̄p

M

∣∣∣∣∣ un′,k

〉]

.

(5.16)
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Using this result when n′ 0= n and the fact that F = ma we finally have that

|a| 1 [En(k) − En′(k)]2

h̄ 〈un,k |p| un′,k〉
. (5.17)

In the shallow well limit, the right hand side will be smallest at the band

edges, where En(kL) − En′(kL) ≈ V m
0 and m denotes the mth band gap (see

Section 3.7.1). We see that the condition for an adiabatic acceleration becomes

very stringent for higher gaps that scale like V 2m
0 . At the band edge, we can

approximate the two wave functions as nearly degenerate plane waves, and the

condition for the acceleration to be adiabatic for first band gap is

|a| 1 V 2
0

h̄2kL
. (5.18)

We can express this condition in terms of the Bloch frequency

νB =
1

τB
= |F |d/h, (5.19)

where d = π/kL is the lattice periodicity. We have that

νB 1 V 2
0

4h̄2ωr
, (5.20)

where the recoil frequency ωr is defined in Chapter 3. Using the scaling also

defined in that chapter, we have that

νB 1 (V ′
0)

2 · 400 kHz, (5.21)

where V ′
0 = V0/Eu is the scaled well depth.

It is worth mentioning here that for our Wannier-Stark experimental

data, our scaled well depths were typically 0.4, making accelerations below

950 m/s2 adiabatic (assuming “1” is satisfied by a factor of 10). Despite this

condition, we successfully measured Wannier-Stark resonances, the spectral

signature of Bloch oscillations, at accelerations as high as 3000 m/s2.
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5.2 The Wannier Stark ladder

Although Bloch oscillations had been predicted, the problem of particle motion

in a periodic potential under the influence of an applied field was still an open

question. In 1960, some 32 years after Bloch’s seminal paper, Wannier pointed

out that for a three dimensional crystal, if the field were directed along a lattice

axis then the periodic motion in k produces an energy quantization, a Stark

ladder of states [50].

The simplest way to argue this point is for the case of one-dimension.

First, we assume that there exists a solution ψ with energy E:

Hψ = (H0 − Fx)ψ = Eψ. (5.22)

Now, we act on this with the lattice translation operator n times,

(Td)
n(Hψ) = (Td)

n(Eψ), (5.23)

and using [Td, H0] = 0, we have that

Hψ(x + nd) = (E + ndF )ψ(x + nd). (5.24)

So we see that if ψ(x) is a solution then there is exists a whole ladder of states

ψ(x + nd) with energies shifted from E by an integer times the Bloch energy

corresponding to the Bloch frequency, Eq. (5.19):

∆E = ndF = nhνB. (5.25)

Following the proposal by Wannier, there was a flurry of activity in

support of these predictions, and simultaneously a debate began regarding the

methods employed. A review of this debate is given by Krieger and Iafrate in

a paper where they offer an alternate approach to the problem [66]. Here we

provide a short list of the main objections.
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Most of the criticisms came from Zak and Rabinovitch who rejected

the proposals of Bloch oscillations and the Wannier-Stark ladder because they

were based on unfounded assumptions (neglecting interband coupling terms)

and methods (the use of extended, periodic basis functions). The first criticism

addresses the argument presented above. Zak showed that the spectrum of E is

continuous despite the fact that if E is an eigenvalue then so is E+ndF . Hence,

one should not expect a discrete ladder of states. Secondly, it was argued

that Houston functions and the crystal momentum representation, which both

employ Bloch functions, are invalid for solving finite crystals with nonperiodic

scalar potentials, since these functions are periodic at the boundaries but the

actual solution may not be. Finally, it was argued that for an infinite crystal

the operator x acting on the wave function diverges and therefore cannot be

represented by Bloch states. The decade of debate was finally settled when

Koss and Lambert reported an experimental observation of the Wannier-Stark

ladder in gallium arsenide [17]. A review of this subject and the experimental

work that has been done in superlattices is provided by Mendez and Bastard

[19].

Krieger and Iafrate provide an alternate approach that avoids the above

difficulties by considering a finite crystal (avoiding the third point), employing

a gauge transformation of H to include the field as translational symmetry

preserving vector potential instead of the scalar potential (avoiding the sec-

ond criticism), and refraining from making any assumptions about the nature

of the spectrum (avoiding the first issue raised by Zak). In this form, H is

still periodic, and therefore the use of Houston functions (Bloch functions)

is acceptable. In addition, by considering the time-dependent instead of the

time-independent problem they avoid the issues of solving for energy eigenval-

ues. Essentially, there are no eigenstates, but only metastable resonances that

eventually decay.
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Although their results are equivalent to those derived by Houston and

others, their analysis cleanly avoids the above difficulties, and because we will

use it both for the interpretation of the Wannier-Stark data as well as for the

estimation of the tunneling lifetimes of the accelerated states, we provide here

a sketch of the derivation in the language of our optical potential. We begin

with the transformed Hamiltonian, Eq. (5.5), which is analogous to the form

where the electric field is described by a vector potential in lieu of a scalar

potential (see Section A.2). In order to solve for the evolution of a state Ψ, we

will expand it in the basis of “instantaneous solutions” of the time-dependent

Schrödinger equation,

Hφ′
i =

[
(p − G)2

2M
+ V (x)

]

φ′
i = εiφ

′
i = ih̄

∂φ′
i

∂t
, (5.26)

where G = M α̇. If we make the substitution

φ′
i = eiGx/h̄φi, (5.27)

then Eq. (5.26) reduces to the unperturbed Schrödinger equation

[
p2

2M
+ V (x)

]

φi = εiφi, (5.28)

with the usual Bloch solutions. We make the identifications

φi = ψn,k(x) = eikxun,k(x) (5.29)

and

εi = εn(k). (5.30)

Now, because the lattice translational invariance is preserved with this choice

of H, we can, with impunity, impose periodic boundary conditions at the edges

of the crystal on the solutions φ′
i,

φ′
i(x, t) = φ′

i(x + Nd, t), (5.31)
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where we let the length L of our crystal be N lattice periods: L = Nd. Using

this condition, the form of φi, and Eq. (5.27), we get the condition

G

h̄
+ k = n

2π

Nd
, (5.32)

where n is some integer. Now we differentiate this equation and arrive at the

semiclassical equation of motion

k̇ = Ġ/h̄ = F/h̄ (5.33)

k = k0 + F t/h̄. (5.34)

So, the instantaneous solutions are

φ′
i = eiGx/h̄φn,k(t)(x), (5.35)

where the functions φn,k(t)(x) are accelerated Bloch states or Houston functions

[12]. Now, we expand an arbitrary state Ψ in terms of these solutions

Ψ(x, t) =
∑

i

ci(t)φ
′
i(x, t), (5.36)

and plug this into the Schrödinger equation

ih̄
∂

∂t

∑

i

ci(t)φ
′
i(x, t) =

∑

i

εici(t)φ
′
i(x, t). (5.37)

After multiplying both sides by e−iGx/h̄φ∗
n′,k′ and integrating over all space, we

get

εn,kcn,k = ih̄
∂cn,k

∂t
− iF

∑

m

cm,kWnm(k), (5.38)

where

Wnm(k) =
∫ ∞

∞
u∗

n,k

∂um,k

∂k
dx. (5.39)

Using the substitution

cn,k(t) = cn(t)e
− i

h̄

∫ t

0
εn(k(τ ))dτ , (5.40)
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we have finally that

ċn(t) =
F (t)

h̄

∑

m

cm(t)Wn,me
i
h̄

∫ t

0
[εn(k(τ ))−εm(k(τ ))]dτ , (5.41)

where again F (t) is an arbitrary time-dependent inertial force experienced by

the atoms in a moving optical lattice. If initially the particles are in the lowest

band n = 0 at quasimomentum k = k0, then for sufficiently short times we

can approximate Eq. (5.41) with just one term in the sum. Integrating this

equation for the second band amplitude n = 1 gives

c1(t) =
∫ t

0

F (t′)

ih̄
W01(k(t′)) exp

[
i

h̄

∫ t′

0
[ε0(k(t′′)) − ε1(k(t′′))dt′′]

]

dt′. (5.42)

If we assume that the force is constant,

k(t) = k0 +
F t

h̄
, (5.43)

and we evaluate the integral for N traversals of the Brillouin zone [−K/2, K/2],

where for an optical lattice K/2 = h̄kL, using the fact that both W and ε are

periodic over 2kL, we have that

|c1(NτB)|2 = |U |2 sin2(Nβ)

sin2(β)
, (5.44)

where

β =
1

2F

∫ kL

−kL

[ε0(k) − ε1(k)]dk (5.45)

and

U =
∫ kL

−kL

W01(k) exp

[
i

F

∫ k

0
[ε0(k

′) − ε1(k
′)]dk′

]

dk. (5.46)

If an oscillatory term cos(ωt) is added to F as a probe of the spectral features,

a result very similar to Eq. (5.44) is obtained. Treating the oscillatory term as

a perturbation and assuming the constant term in F is small so that transitions

due to tunneling are negligible, Krieger and Iafrate obtain the result

|c1(NτB)|2 ≈ |U ′|2 sin2(Nβ ′)

sin2(β ′)
(5.47)
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where now

β ′ =
1

2F

∫ kL

−kL

[ε0(k) − ε1(k) ± h̄ω]dk (5.48)

and

U ′ =
∫ kL

−kL

p01(k) exp

[
i

F

∫ k

0
[ε0(k

′) − ε1(k
′) ± h̄ω]dk′

]

dk, (5.49)

where the matrix element W of ∂
∂k has been replaced with the matrix element

of p = −ih̄ ∂
∂x .

5.2.1 Wave interference: the spectral ladder and tunneling reso-
nances

The form of Eqs. (5.44) and (5.47) is analogous to the optical interference

pattern generated by N coherent sources or by N slits illuminated by a plane

wave [67]. In fact, the analogy is exact when one considers the problem in one

dimension. The interpretation is that each crossing of the Brillouin zone acts

as a temporal slit that contributes to the transmission amplitude |c1(t)| in the

same way as do multiple spatial slits in the case of optical interference. Using

L’Hospital’s rule, we see that this wave interference produces maxima in the

transmission probability,

sin2(Nβ)

sin2(β)

∣∣∣∣∣
β=nπ

= N2, (5.50)

when β is an integer multiple of π. We define the average band gap as

ε̄g =
1

2kL

∫ kL

−kL

[ε0(k) − ε1(k)]dk, (5.51)

so that β = 2kLε̄g/2F . Using the definition of the Bloch frequency, the reso-

nant condition with no oscillatory drive is

ε̄g/h = nνB, (5.52)
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and the condition with the drive is

ε̄g/h ± ν = nνB . (5.53)

These two resonant conditions contain the essence of the Wannier-Stark ladder.

This second condition when solved for the probe frequency,

|ν| = ε̄g/h + nνB , (5.54)

shows that there exist spectral resonances in the 1 → 2 transition that are

spaced by integer multiples of the Bloch frequency and centered at a frequency

corresponding to the average band gap. Our interpretation is that there exists

a centered ladder for each band. The weak spectral probe ν couples these

states, driving transitions when on resonance. This situation is depicted in

Fig. 5.2.

The first condition, Eq. (5.52), describes resonances in the tunneling

rate, the rate of interband transitions induced by the acceleration itself. These

resonances occur when an integer n times the Bloch frequency equals the aver-

age band gap. The interpretation here is that at this value for the acceleration

and well depth, the bound Wannier-Stark states in the first band are degen-

erate in energy with states in the second band n lattice sites over. Since the

tunneling rate is proportional to the density of final states evaluated at the

energy of the bound state, when this degeneracy occurs, the density of final

states is very large and therefore the rate is enhanced. This subject is discussed

in more detail in Section 6.4.
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5.3 Observation of the Wannier-Stark ladder

In order to observe the spectral resonances generated in an accelerating optical

lattice, we introduced a weak time-dependent modulation (frequency νp) of

the standing wave position which could induce these interband transitions as

indicated by the arrows in Fig. 5.2. The full potential in the lab frame has the

form

V0 cos[2kL(x − α(t))], (5.55)

where

α(t) =
1

2
at2 +

δ

2kL
cos(2πνpt). (5.56)

As was mentioned earlier, this potential expressed in the accelerating frame

(the transformations are outlined in the Appendix, Section A.2) is

V0 cos(2kLx) + xaM + Mx
δ(2πνp)2

2kL
cos(2πνpt). (5.57)

The well depth was chosen such that the tunneling rate out of the first band

for the accelerations considered was negligible over the time scale of the exper-

iment, but the rate from the second to the third band was quite high. Under

these conditions, once an atom makes a transition out of the trapped band, it

quickly tunnels out of the second band and effectively becomes a free particle,

no longer accelerating with the potential. For each run we measured the sur-

vival probability for a given probe frequency, and we observed the resonances

spaced by the Bloch frequency that constitute the atomic Wannier-Stark lad-

der [68].

A complimentary study of Bloch oscillations, the time-dependent dual

of the Wannier-Stark ladder, was performed almost simultaneously by Christophe

Salomon’s group in Paris at the ENS [22]. In this experiment, a stimulated-

Raman-cooled sample of cesium atoms was trapped in an accelerating optical

lattice, and the ensemble velocity was measured as a function of time. The
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Figure 5.2: Schematic of the centered Wannier-Stark ladders superimposed on
each band. The weak spectral probe νp couples these states, driving transitions
when on resonance. After the particle makes the transition out of the first
band, it easily crosses the successive band gaps, becoming essentially a free
particle. EB = hνB
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velocity evolution clearly showed Bloch oscillations superimposed on the linear

acceleration experienced by the atoms in the first band. For this experiment,

it was crucial that a sub-recoil distribution well localized in k was used, since

each Houston state in the band starts with a different phase. Without state-

selective velocity detection, an average over many values of k in the first Bril-

louin zone would have smeared out the oscillations. By a careful measurement

of the velocity evolution, they were able to reconstruct the dispersion curve

for the fundamental and second bands.

In Section 5.2.1 we saw that the resonance condition for the probe drive

is

|νp| = ε̄g/h + nνB, (5.58)

where ε̄g is the average band gap and the Bloch frequency is given by

νB =
F

2h̄kL
=

a

2vr
, (5.59)

where 2vr = 0.0589 m/s is twice the recoil velocity. From this condition, it is

clear that the absolute position of these resonances is tied to the band gap,

which is proportional to V0 at these low well depths (see Section 3.7.1). For

this reason, any change of the well depth – spatial or temporal – experienced

by the atoms will lead to a shift in frequency of the resonances. In order

to obtain a spectrum, we average over many experimental runs, each with a

slightly different well depth; therefore, the measured peaks were broadened

by the variation of the well depth about its mean value. For most of these

experiments the average band gap was on the order of 100 kHz, so a variation

of the well depth of 10 % would result in a 10 kHz shift. The smallest spacing

measured was 10 kHz for an acceleration of 600 m/s2.

Although we monitored the power in each constituent beam of the

standing wave during the experiment and we discriminated the data to remove

shot-to-shot variations greater than 1%, we did not discriminate variations
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during each run to better than 5%. Another known systematic variation in the

well depth was due to atomic motion transverse to the standing-wave axis. The

transverse Gaussian profile of the laser beams produces a position-dependent

well depth, and consequently any radial motion produces a time-dependent

variation in the well depth. This effect is small, but not completely negligible,

since our interaction times are on the order of 1ms and an atom moving at

2σv = 10 recoils = .3 m/s (where σv is determined by the temperature of the

MOT) will travel almost 300 µm. For a beam size of σ = 2 mm, this motion

would result in a 1% variation in the well depth. One method we employed

to reduce the systematic error associated with this effect was to count only

those atoms that were cold in the transverse direction. By choosing a narrow

horizontal window aligned along the standing wave axis for the two dimensional

images acquired by the CCD camera, we included only those atoms which were

relatively cold in the transverse direction in the image plane. This method did

not exclude hot atoms in the dimension perpendicular to the image plane,

but nonetheless reduced the widths of the measured resonances. The well

depth variation across the initial MOT distribution was negligible since it was

a spatial Gaussian with a width of σx = 0.12 mm.

Another source of broadening is phase noise in the standing wave due

to mirror vibrations and electronic noise in our AO drivers. This phase noise

can be viewed as a broadening mechanism for the acceleration or for the probe

modulation. This noise was measured by heterodyne detection to have a spec-

tral width of approximately 10 kHz.

In Fig. 5.3, a measured Wannier-Stark spectrum is shown for an ac-

celeration of 1100 m/s2 and V0 = 0.461. The peak spacing is approximately

18.6 kHz, corresponding to the Bloch frequency at this acceleration. A series

of experimental runs were all done at a well depth of V0 = 0.458, each with a

different acceleration. The peak locations were determined in each case and
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Figure 5.3: Wannier-Stark ladder resonances for a well depth of V0 = 0.461 and
an acceleration of a = 1100 m/s2. The Bloch frequency for this acceleration is
18.6 kHz. The center peak corresponds to the average band gap between the
first and second band. For the well depth determined by beam measurements,
ε̄g = 0.521, which corresponds to a frequency of 104.2 kHz and is in good
agreement with the central peak.
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Figure 5.4: The fan of Wannier-Stark resonances for a well depth of V0 = 0.458.
The position of the center state is independent of acceleration and correponds
to the average band gap, which is ε̄g = 0.519 ↔ 104 kHz for this choice of V0.

are shown in Fig. 5.4 by what is typically referred to as a “fan” chart of the

Wannier-Stark resonances. As predicted by Eq. (5.58), there is one resonance

at a frequency corresponding to the average band gap, and this resonance does

not move as the acceleration is varied. The well depth calculated from our de-

tuning, power, and beam diameter measurements was V0 = 0.458. For this

well depth, the average band gap (calculated numerically) is ε̄g = 0.519, which

corresponds to a frequency of 104 kHz. This value for the center state agrees

well with our experimentally measured resonance. All of the other states move

out with a slope given by an integer times the Bloch frequency.
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5.4 Observation of the fractional Wannier-Stark ladder

If a strong AC modulation of frequency ωs is added to the acceleration and

the weak AC probe, then the Wannier-Stark spectrum is predicted to develop

additional resonances [68]. In particular, if ωs matches the Bloch frequency

by a fractional factor q/p, the spectrum will become a fractional ladder with

a spacing p times smaller.

For this experiment, the potential in the lab frame has the form

V0 cos[2kL(x − α(t))], (5.60)

where

α(t) =
1

2
at2 +

δ

2kL
cos(2πνpt) +

∆

2kL
cos(2πνst). (5.61)

Fig 5.5 shows a series of three spectra taken at three different values for the

strong modulation frequency νs = (0, 1
2 ,

2
3) ·νB. The fractional resonances were

difficult to resolve, for various reasons. Perhaps the most problematic issue

was variation of the well depth during each run. Since the fractional peaks

are on the order of a few kilohertz wide and spaced by 1
2 ,

1
3) · 17 kHz, a change

of 1% of V0 will shift them by more than half their width. The best results

were obtained by choosing an acceleration of 1000 m/s2 (for which the peaks

were relatively far apart) and a well depth of V0 = 0.4. The probe strength

was the same as that used to detect the normal ladder (δ = 0.05), and the

strong AC drive amplitude found to produce the best results was ∆ ≈ 2.5.

When a larger ∆ was used, the peaks washed out. When ∆ was made smaller,

the fractional peaks disappeared. We also noticed a sensitivity to the exact

frequency matching. When νs was tuned 2% away from the rational fraction

of νB, the fractional peaks would disappear into the baseline.
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Figure 5.5: Fractional Wannier-Stark ladders for a well depth of V0 = 0.4, an
acceleration of a = 1000 m/s2, and three values of νs: (a) νs = 0, (b) νs = 1

2νB,
and (c) νs = 2

3
νB where the Bloch frequency is approximately 17 kHz. Evidence

of peaks developing between the normal Wannier-Stark resonances at a spacing
of 1

2 ,
1
3 × νB can be seen by comparing plots (b) and (c) with (a).



Chapter 6

Quantum tunneling

In this chapter we consider the time-dependent behavior of atoms in an ac-

celerating optical lattice. In contrast to Chapter 5, where we were interested

in the time-independent spectral distributions of the quasi-eigenstates result-

ing from small accelerations, we are interested here in the behavior of the

system when the acceleration is not small. In this limit, the lifetime of the

Wannier-Stark states becomes short enough to measure, providing a simple

experimental tool for the study of quantum tunneling. The center of mass

tunneling of an atom from an accelerating optical lattice is identical to the

phenomenon of Landau-Zener tunneling of an electron between, say, the va-

lence and conduction bands due to the application of a homogeneous electric

field. This interband tunneling is distinct from the Bloch tunneling discussed

in Section 3.5.2. In the latter case, a spatially localized state “decays” to a

delocalized superposition; however, neither the quasimomentum nor the band

index change.

6.1 Introduction: an atom accelerator

Our initial impetus for developing an atom accelerator was the realization of

an atom interferometer with very slow beams. Unlike previous interferometers

that used fast atomic beams emerging from ovens or supersonic nozzles at

up to a thousand meters per second [52, 69, 70], we hoped to implement

119
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the techniques of laser cooling to produce a very bright and slow moving

source that has several distinct advantages over the former type. Perhaps the

primary advantage is that the interaction times, which set an ultimate limit

on the interferometer’s resolution, achievable with a slow beam can be orders

of magnitude longer than for the fast beam. Moreover, a slow beam can have

a much larger opening angle in the case of a Mach-Zehnder interferometer,

facilitating the isolation of the two paths. Another advantage is that laser

cooling reduces the size and velocity in all three dimensions, thus eliminating

the need to pre-select atoms entering the interferometer region. Of course,

what matters is not the brightness but the throughput of the interferometer,

which can be made larger at the expense of size and simplicity.

In order not to spoil the brightness of the laser-cooled source, we needed

a method to launch the beam without dissipation or heating. This requirement

precluded the use of spontaneous emission methods like a pushing beam of

resonant light. Our solution was to trap the atoms in the lowest band of a

one-dimensional optical lattice and then accelerate the lattice adiabatically

by imposing a linear chirp in the frequency difference of the two constituent

beams ν1 − ν2. The velocity of the standing wave is

v =
λ

2
(ν1 − ν2), (6.1)

where λ is the wavelength of the light. This method not only avoids the trans-

verse heating incurred with spontaneous emission processes but, in addition,

perfectly preserves the initial longitudinal velocity profile of the sample, given

that the lattice is turned on adiabatically [37].

6.1.1 The classical limit for this atom accelerator

In order to determine the limitations of such an atom accelerator, we begin

with a classical analysis. An atom accelerating with the lattice experiences a
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potential of the form

V (x) = V0 cos(2kLx) − xaM, (6.2)

where the linear term is due to the inertial force. In order for an atom to be

accelerated, the force due to the cosine must always exceed or at least equal

the inertial force. The forces acting on the atom are given by

F (x) = −∂V (x)

∂x
= −2kLV0 sin(2kLx) + Ma, (6.3)

and we see the maximum acceleration that can be sustained is

acl =
2kLV0

M
. (6.4)

As long as this acceleration is not exceeded, there exist local minima in the

potential and therefore classical turning points. This situation is depicted in

Fig. 6.1. Although there exist bound orbits for accelerations less than acl, the

effective well depth decreases monotonically with a. We define the effective

well depth as half the energy difference between a local minimum and the

nearest maximum. The critical points in the potential are given by

xn =
1

2kL

[
sin−1

(
a

acl

)
+ 2nπ

]
, (6.5)

where n is an integer. Being careful to take the nearest minimum and maxi-

mum, the effective well depth is found to be

Veff(a) = V0

∣∣∣∣∣∣

√

1 −
(

a

acl

)2

− a

acl

(
cos−1

(
a

acl

))∣∣∣∣∣∣
, (6.6)

where a ≤ acl. Clearly, when a is equal to acl there are no more minima

and the effective well depth is zero. Although the volume of trapped states

decreases with a in this way, for a fixed acceleration, a particle in a trapped

state will remain there, accelerating with the potential for an indefinite period

of time. This is in stark contrast with the phenomenon of tunneling predicted
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Figure 6.1: The tilted potential plotted at two different accelerations: (a)
a < acl and (b) a = acl.
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by quantum mechanics, in which the particle always has a non-zero probability

of escaping from the potential, and so it will inevitably cease to be accelerated

after some time. The ultimate limit of this coherent, atom accelerator is

therefore set by the tunneling rate, which will be calculated in Sections 6.3.1

and 6.3.2.

6.2 Observation of quantum tunneling: is the observed
loss really due to tunneling?

Before proceeding with the analysis of tunneling rates for this atom accelerator,

I would like to present our observation of atomic tunneling and discuss a few

important experimental issues. In Fig. 6.2, the survival probability of the first

band is plotted on a logarithmic scale versus the duration of the acceleration,

and the evolution is described well by an exponential decay law. However, in

order to be sure that the loss of atoms was due to tunneling, it was necessary to

rule out other loss mechanisms that would also produce an exponential decay.

The loss mechanisms for the optical potential other than tunneling

include amplitude and phase noise of the constituent beams, abrupt switching

between different accelerations, and spontaneous scattering. The phase noise

of the potential was characterized by an optical homodyne measurement, as

described in Chapter 2. It was found that the frequency and amplitude of

the phase noise in this experiment was far below that required to drive a

measurable number of atoms out of the first band, as was done in the Wannier-

Stark ladder experiments of Chapter 5. The amplitude of the standing wave

was monitored in real time with fast photodiodes, and traces with significant

amplitude variations were rejected.

Since the population of the first band is prepared by a imposing a small
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Figure 6.2: Survival probability as a function of the duration of the tunneling
acceleration. Here V0 = 0.25 and atunnel = 4500 m/s2. Note that the vertical
axis is logarithmic.
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acceleration prior to the large tunneling-acceleration, there was some concern

that the transition, which contains high acceleration components, could pos-

sibly induce a loss. Näively, this loss would be incurred twice, once at each

acceleration switch (see Fig. 2.13), and it would constitute a constant loss

independent of the acceleration duration. For this reason, it was expected

that it would simply shift the overall decay curve down by some amount. We

attempted to study this loss process by smoothing the velocity profile. How-

ever, the losses, if indeed there were any, due to these effects were below our

detection ability.

The final loss mechanism considered is due to the spontaneous scat-

tering of a photon. The net atomic recoil projected along the standing-wave

axis is in the range [0, 2h̄kL] corresponding to a kinetic energy imparted to the

atom of up to 4ωr = 1
2Eu (see Section 3.1 for the definition of the scaled units).

Since the first band gap is on the order of V0 = 0.275Eu, we see that the proba-

bility of escaping the first band due to a single spontaneous scattering event is

significant. The presence of even 1 µW/cm2 of the resonant MOT light would

produce on the order of a spontaneous scattering event every 5 ms, and so a

MOT inhibit channel was added to the experiment, which disconnected the

AOM oscillator from the crystal during the interaction to prevent any light

leakage through the 1st diffraction order to the chamber. A second source

of spontaneous scattering is the far detuned lattice itself. In principle, this

effect can be made negligibly small by simply detuning farther away and then

compensating by increasing the amplitude of the constituent beams. For the

experiment presented here, the spontaneous scattering probability was esti-

mated to be 10% per millisecond. Since the period of large acceleration was at

most 200 µs, the probability for a spontaneous event was negligible. One easy

systematic check exploits the fact that the spontaneous rate, and therefore

(for low accelerations) the corresponding loss, is independent of acceleration.
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Since there was no appreciable loss during the transport accelerations, and

since our measured values of the decay rates were in good agreement with the

predictions for tunneling (in the absence of this dissipative effect), we were

confident that it was not a problem.

6.3 Theoretical analysis of interband tunneling

6.3.1 Zener breakdown

The phenomenon of tunneling in this system can be visualized in two equiv-

alent ways: one corresponding to the position, and the other the momentum

representation of the dynamics. The first picture was employed by Zener in

his analysis of the electrical breakdown of dielectrics [16]. There are two phe-

nomena responsible for dielectric breakdown, Zener breakdown and avalanche

breakdown. The latter occurs when electrons are excited out of the lower-lying

valence bands via collisions with energetic conduction band electrons. Zener

breakdown is more analogous to the auto-ionization of a free gas, in which

an electron tunnels from a bound state to the continuum because of a large

applied electric field.

We begin by considering that an atom accelerating with the lattice

experiences, in addition to the sinusoidal part, a linear term due to the inertial

force F = Ma. The wave equation for this situation is
[

p2

2M
− V0 cos(x) + (E − xaM)

]

|ψ(x)〉 = 0. (6.7)

Following Zener’s analysis, we assume that the linear term changes only slightly

over a lattice period and so the band structure is preserved. The tilted poten-

tial with the allowed bands is shown in Fig. 6.3. An atom in the lowest band

can be thought of as occupying a state with some energy E bound to the left

by the potential and to the right by the first band gap. By penetrating the bar-

rier presented by this gap, the atom can escape the first band into the second,
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Figure 6.3: Schematic of tilted bands. The points xA and xB are the classical
turning points for a particle bound in the lowest band. It accelerates up to
the band edge xB, where it is Bragg reflected. It then climbs the plane to xA

where it turns around to complete the Bloch oscillation. By penetrating the
forbidden region (plotted in white), the particle can tunnel to the second band
and emerge at xC .
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and then into the third, and so on. As was shown in Chapter 5, the veloc-

ity of the particle oscillates at the Bloch frequency and therefore periodically

reflects from the band gap each time with some probability p of penetration.

The probability per unit time is then the product p · νB. where p is given by

p =

∣∣∣∣∣
ψ(xC)

ψ(xB)

∣∣∣∣∣

2

. (6.8)

In order to estimate p, Zener takes as a solution to the wave equation a Bloch

function with a spatially dependent quasimomentum and energy,

|ψ(x)〉 = ei
∫

k(x′)dx′
uk(x)(x), (6.9)

where the quasimomentum k is real only for certain values of x. In the range

[xA, xB] E lies in the first band, and therefore k is real; however, in the band

gap [xB, xC], k will be complex, and ψ(x) will decrease exponentially. After

solving for the complex part η of k and approximating

∣∣∣∣∣
ψ(xC)

ψ(xB)

∣∣∣∣∣

2

≈ e
−2

∫ xC
xB

ηdx
, (6.10)

Zener concludes that the tunneling rate is

γ = νB exp

(

−
π2Mdε2g

h2F

)

, (6.11)

where d is the lattice periodicity, and εg is the width of the gap. Making the

substitutions for the case of atoms in an optical lattice, F = Ma and d = π/kL,

Eq. (6.11) becomes

γ = νBe−ac/a (6.12)

where

ac =
2π( εg2 )2

2h̄2kL
(6.13)

is the critical acceleration.
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6.3.2 Landau-Zener theory of non-adiabatic transitions

The second picture of this tunneling process is viewed in reciprocal space.

Making the same assumption as in the previous picture, that the band struc-

ture is preserved for small accelerations, we find that an atom in the lowest

band with a quasimomentum k will simply translate at a constant “velocity”

in k-space until it hits the band edge. At this point, the atom can either reflect

from the band edge remaining in the same band or it can jump the band gap

into the second band. As we saw in Chapter 3, the band gaps are actually

avoided crossings of the free-particle energies. Therefore, at a sufficiently high

acceleration, an atom will make a non-adiabatic transition through the gap

and continue up the dispersion curve as if it were a free particle. In 1932,

Clarence Zener considered the question of non-adiabatic crossings of energy

levels and found that the transition probability after one pass through the

avoided crossing is given by

P = exp

(

−(2π)2

h
ε212

/∣∣∣∣∣
d

dt
(ε1 − ε2)

∣∣∣∣∣

)

, (6.14)

where ε12 is the coupling strength and equal to half the energy difference

between the two levels ε1 and ε2 [15]. For the case at hand, ε12 is half the band

gap. We can approximate the two energy functions by the free particle curves

ε1 =
p2

1

2M
, where p1 = taM (6.15)

ε2 =
p2

2

2M
, where p2 = 2h̄kL − taM, (6.16)

which gives the following for the time derivative of their difference:
∣∣∣∣∣
d

dt
(ε1 − ε2)

∣∣∣∣∣ = (2h̄kL)a. (6.17)

Substituting Eq. (6.17) into into Eq. (6.14) gives

P = e−ac/a, (6.18)
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where the critical acceleration was defined above as

ac = 2π(
ε12

2
)2/2h̄kL. (6.19)

Since the atom is performing Bloch oscillations, it encounters the gap every

Bloch period. Therefore the probability per unit time to make the interband

transition is

γ = νBe−ac/a, (6.20)

which is precisely what was obtained in the previous section. Given this rate

of decay, the survival probability as a function of time will be

Psurv(t) = e−γt. (6.21)

6.4 Observation of deviations from the Landau-Zener
prediction

In Chapter 5, the existence of the Wannier-Stark ladder was shown to produce

absorption resonances, which were experimentally measured with a sinusoidal

weak probe. The existence of these states also led to a resonantly enhanced

tunneling rate between bands. These resonances occur when an integer n times

the Bloch frequency equals the average band gap. The interpretation here is

that at this value for the acceleration and well depth, the bound Wannier-Stark

states in the first band are degenerate in energy with states in the second band

n lattice sites over. This situation is depicted in Fig 6.4. Since the tunneling

rate is proportional to the density of final states evaluated at the energy of

the bound state, when this degeneracy occurs, the density of final states is

very large and therefore the rate is enhanced. One would expect the lifetime

at these special points to be shorter than Landau-Zener theory. Moreover,

the Wannier-Stark resonances will be separated by voids in the continuum

where the density of states is far less than the average density. This is a
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Figure 6.4: Schematic of the band structure and Wannier-Stark resonances
for an acceleration matching the resonant tunneling condition. Because the
continuum at the energy of the unstable state contains a Wannier-Stark res-
onance, the tunneling rate is enhanced, and the Landau-Zener prediction for
the lifetime is unreliable.
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consequence of the fact that the sum the matrix elements Wnm(k) (defined

by Eq. (5.39) of Section 5.2.1) over the entire band is conserved [71] (given

that the bands are still a valid picture). At these points, one expects that the

lifetime is much longer than predicted by Landau-Zener theory. Moreover, the

width of the resonant condition is related to the width of the Wannier-Stark

state. For this reason, the resonances become sharper and more pronounced

for lower accelerations. Indeed, the lifetime shows such deviations from the L-

Z prediction. In Fig. 6.5 the lifetimes are plotted as a function of acceleration,

and the deviations from L-Z theory are in accord with the above discussion

[3].

The resonance condition, derived in Section 5.2.1, is

ε̄g/h = nνB, (6.22)

where n is an integer, ε̄g is the average band gap, and the Bloch frequency is

νB =
a

2vrecoil
=

a

0.0589 m/s
. (6.23)

The resonance condition expressed for the acceleration is then

a =
2vrecoilεg

nh
. (6.24)

By measuring at lower accelerations than the experiment shown in Fig. 6.5,

more resonances were resolved. Fig. 6.6 shows lifetime measurements taken

at accelerations as low as 800 m/s2. The position of the resonances agree

well with their predicted locations. Since the well depth was V0 = 0.228, the

average band gap was ε̄g = 0.356 leading to resonance enhanced tunneling

when the acceleration was a ≈ (4200m/s2)/n. For very large accelerations,

the lifetime is seen to approach the Landau-Zener prediction. This is physically

reasonable because the tunneling rate out of the second band dominates any

coherent Bloch oscillations. At this point, the continuum is homogeneous, and

no deviations are expected. This situation is depicted in Fig. 6.7.
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Figure 6.5: Tunneling lifetime versus acceleration. The experimental data are
marked by solid dots. The uncertainty in the exponential fits that determine Γ
are typically ±2%, and the uncertainty in the acceleration for the range shown
is ±50 m/s2. The dashed line is the prediction of Landau-Zener theory. The
experimental well depth was V0 = 0.36 with an uncertainty of ±10%. The
data are bracketed between quantum simulations for well depths of V0 = 0.30
(empty triangles) and V0 = 0.36 (empty diamonds), and the L-Z prediction is
for an intermediate value of V0 = 0.33. Only the first resonance is seen, which
should occur at an acceleration of 5,290 m/s2 and a well depth of V0 = .36.
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Figure 6.6: Tunneling lifetime versus acceleration for a well depth of V0 =
0.228. The experimental data are marked by dots, and the Landau-Zener pre-
diction for the lifetimes is indicated by the dashed line. In this plot, several
tunneling resonances can be seen. The average band gap is ε̄g = 0.356 leading
to resonance-enhanced tunneling when the accleration is a ≈ (4200m/s2)/n
where n is an integer. The predicted locations for the resonances are indicated
by arrows, and the experimentally measured lifetimes indeed reflect these res-
onances.
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Figure 6.7: Schematic of the band structure and Wannier-Stark resonances for
an acceleration exceeding the first resonant tunneling condition. Because the
continuum at the energy of the unstable state has no distinct resonances, the
Landau-Zener prediction for the lifetime is a good approximation.
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6.5 Non-exponential decay

An exponential decay law is the universal hallmark of unstable systems and

is observed in all fields of science. This law is not, however, fully consistent

with quantum mechanics and deviations from exponential decay have been

predicted for short as well as long times [72, 73, 74]. In 1957, Khalfin showed,

given that H has a spectrum bounded from below, that the survival probability

is not a pure exponential but rather of the form

lim
t→∞

P (t) ≈ exp(−ctq) q < 1, c > 0. (6.25)

Then, in 1961, Winter showed that, for a simple barrier-penetration problem,

the survival probability begins with a non-exponential, oscillatory behavior,

evolves into an exponential, begins oscillating again so that there are recur-

rences, and then finally decays like an inverse power of the time [73]. This

effect is related to the fact that the coupling between the decaying system and

the reservoir is reversible for short enough times and the population transfer

begins with a quadratic time dependence. Moreover, for these short times, the

decayed and undecayed states are not yet resolvable, even in principle.

Perhaps the simplest demonstration that P (t) is not strictly an ex-

ponential is for the case of short times. Given that the mean energy of the

decaying state is finite, one can show that

dP (t)

dt

∣∣∣∣∣
t→0

= 0. (6.26)

Therefore we will show, following Fonda, that the decay for small times is

less than any exponential function [74]. To show this property, we will first

define the survival probability P . We assume that the system is initially in

the undecayed state |Ψ0〉 at t = 0, and that the state evolves under the action

of the Hamiltonian H,

|Ψ(t)〉 = e−iĤt|Ψ0〉, (6.27)
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so that the probability amplitude for being in the undecayed state at time t is

A(t) = 〈Ψ0|e−iĤt|Ψ0〉, (6.28)

and the survival probability is just

P (t) = |A(t)|2. (6.29)

Now, we consider a complete set of commuting observables denoted by (H,α)

and common eigenstates |φE,a〉 with discrete and/or continuous spectra. The

completeness relation is

∫
dE da |φE,a〉〈φE,a| = I, (6.30)

and we can expand our state in terms of this basis set. Doing so, we have

A(t) =
∫

dE ω(E)e−iEt, (6.31)

where

ω(E) =
∫

da |〈φE,a|Ψ0〉|2 . (6.32)

Now, we make the assumption that H has a spectrum that is bounded from

below. This assumption is reasonable and necessary for a physical system.

This allows us to place a limit on the integration in Eq. (6.31). We have now

that

A(t) =
∫ ∞

Emin

dE ω(E)e−iEt, (6.33)

and moreover that Ψ is normalizable,

∫ ∞

Emin

dE ω(E) =
∫ ∞

Emin

dE da |〈Ψ|φE,a〉〈φE,a|Ψ〉|2

= 〈Ψ|I|Ψ〉 = 1. (6.34)

Since we have from Eq. (6.34) that

∫ ∞

Emin

dE |ω(E)| < ∞, (6.35)
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the integral defining A(t), Eq. (6.31), is uniformly convergent and therefore

A(t) is everywhere continuous. Since ω(E) is real, A has the additional prop-

erty that

A∗(t) = A(−t). (6.36)

Now, we make the second assumption that the mean energy in the state |Ψ〉
is finite:

〈E〉 = 〈Ψ|H|Ψ〉 =
∫

dE ω(E)E < ∞. (6.37)

This assumption implies that the derivative of A is well defined and is contin-

uous everywhere, since

dA(t)

dt
= −i

∫
dE ω(E)Ee−iEt. (6.38)

Using Eq. (6.36), the survival probability can be rewritten as

P (t) = A∗(t)A(t) = A(−t)A(t). (6.39)

Taking the derivative, we have, using the chain rule,

dP (t)

dt
=

dA(−t)

dt
A(t) + A(−t)

dA(t)

dt
, (6.40)

and since both A and its derivative are continuous we have immediately that

dP (t)

dt

∣∣∣∣∣
t=0+

= 0. (6.41)

This result is a general property independent of the details of the interaction.

However, the time scale over which this deviation is apparent depends on the

particular time scales of the decaying system. There are a number of time

scales which seem relevant. The first time scale τe is given by the time that

decay products take to leave the bound state region. This dynamical time scale

is related to the characteristic motion within the bound state and determines

the amount of time required to pass before the decayed and undecayed states
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Figure 6.8: Survival probability as a function of duration of the accelera-
tion atunnel. The solid line is the theoretical prediction. For these data the
acceleration was 7000 m/s2, and the well depth was V0 = 0.425 ± 10% The
theoretical calculation used the same acceleration, but the potential was taken
as V0 = 0.37.

can be resolved. The second time scale is related to the ∆E bandwidth of

the continuum to which the state is coupled. Essentially τm = h̄/∆E is the

time over which the total decayed state contribution to the reformation of the

undecayed state is no longer in phase. After this dephasing time, the coupling

is essentially irreversible.

Although these predictions were made almost 40 years ago, no such

deviations have hitherto been observed experimentally. The primary reason is

that these characteristic time scales in most naturally occurring systems are

extremely short. For the decay of a spontaneous photon, the time it takes a

photon to traverse the bound state size is approximately an optical period,

10−15 s. For a nuclear decay this time scale is orders of magnitude shorter,

about 10−21 s. By contrast, the dynamical time scale for an atom bound in
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Figure 6.9: Survival probability as a function of duration of the accelera-
tion atunnel. The solid line is the theoretical prediction. For these data the
acceleration was 7000 m/s2, and the well depth was V0 = 0.425 ± 10%. The
theoretical calculation used the same acceleration, but the potential was taken
as V0 = 0.37.
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Figure 6.10: Survival probability as a function of duration of the accelera-
tion atunnel. The solid line is the theoretical prediction. For these data the
acceleration was 9000 m/s2, and the well depth was V0 = 0.45 ± 10%. The
theoretical calculation used the same acceleration, but the potential was taken
as V0 = 0.46.

an optical lattice is just the inverse band gap energy, which for a well depth

of 0.4 is 12 µs. The corresponding classical harmonic oscillator frequency for

this well depth is 126 kHz with a period of 7.9 µs.

In Figs. 6.8-6.11, the survival probability is plotted as a function of

the duration of the tunneling acceleration. A plot of the optical lattice ve-

locity profile for this experiment is provided in Fig. 2.13. In order to claim

that we were observing the generic signature predicted by Eq. (6.41), we had

to know that the horizontal axis was a true measure of the duration of the

large acceleration atunnel. For this, we characterized the response of the AOM

driver and found that the switching time between accelerations was 220 ns (see

Chapter 2). Data were taken at intervals of 1 µs for the first 15 µs to obtain

the highest resolution in short time. The long-time exponential behavior was
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Figure 6.11: Survival probability as a function of duration of the accelera-
tion atunnel. The solid line is the theoretical prediction. For these data the
acceleration was 9000 m/s2, and the well depth was V0 = 0.45± 10% The the-
oretical calculation used the same acceleration, but the potential was taken as
V0 = 0.46.
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extensively tested in earlier work [3], and the data shown here for times longer

than 15 µs establish the exponents. Figures 6.9 and 6.11 show expanded-scale

views of the short-time behavior. The focus of our attention is on time scales

shorter than 15 µs. The initial survival probability is flat, with a quadratic

time dependence, owing to a reversible coupling to the bath. The intermedi-

ate stage is characterized by a damped oscillation. After 10 µs the coupling is

irreversible and exponential decay sets in.

By considering a two-band model of this problem, it was shown by Niu

and Raizen [75] that the oscillations occur at a frequency corresponding to the

band gap and that they are damped out after a crossover time (expressed in

scaled units) equal to

tc =
εg
a

. (6.42)

This result for the crossover time from non-exponential to exponential decay

is the same as the tunneling time for Zener breakdown found by Büttiker and

Landauer [76].

After observing short-time deviations from exponential decay, we in-

vestigated the possibility of suppressing tunneling by repeated measurements

during the non-exponential time. This phenomenon, known as the Quantum

Zeno effect, was first predicted by Misra and Sudarshan, who argued that an

unstable particle that is continuously observed will never be found to decay

since each observation causes a collapse of the wave function back to the un-

decayed state [77]. Our hope was to simply suppress tunneling by making

measurements on the first band population every microsecond before it had

time to begin decaying exponentially and before the first dip from the oscil-

lation. The measurement process to “reset the clock” back to t = 0 was the

same process used to initially prepare the atoms. A low transport acceleration

was imposed for which the tunneling rate out of the first band was negligible

but the rate out of the higher bands was large. In this way, the unstable state
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was separated from the decay products in velocity space, and the large accel-

eration could be imposed again, producing no losses for another microsecond.

We performed several experiments, choosing the interruption acceleration and

duration to separate the lowest band from the higher bands by several double

photon recoils (or several Brillouin zones). The interruption produced a revival

of the non-exponential behavior as expected, but the losses incurred by the

measurement process, albeit small, were larger than those for the tunneling

process. For this reason, we could not “break even” on losses, much less sup-

press them. Technical problems associated with the interferometric stability

of the standing wave and problems associated with the finite resolution of our

electronic drivers prevented us from achieving longer non-exponential times by

reducing the well depth and the acceleration. This strategy, of reducing the

acceleration and well depth, would also allow a greater flexibility in the study

of the tunneling time [75].
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Appendix A

Unitary Transformations

A.1 The action of a unitary transformation on the Hamil-
tonian

Given some Hermitian operator A, we can define a unitary operator U such

that

U = eiA. (A.1)

A general state vector |ψ〉 will transform under U by the relation

|ψ̃〉 = U |ψ〉, (A.2)

and a general operator B by the relation

B̃ = UBU †. (A.3)

Unitary transformations preserve both the length of inner products between

state vectors 〈ψ̃1|ψ̃2〉 = 〈ψ1|ψ2〉 as well as the expectation values of time-

independent operators 〈ψ̃1|B̃|ψ̃2〉 = 〈ψ1|B|ψ2〉. However, not all unitary trans-

formations will perserve the energy of the system, and therefore the Hamilto-

nian will not transform exactly according to Eq. (A.3). In order to deduce

the correct form for the new Hamiltonian we require that the dynamics be

unaffected by U . The untransformed Schrödinger equation is

ih̄
∂

∂t
|ψ〉 = H|ψ〉. (A.4)
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Using Eq. (A.2) we can rewrite this as

ih̄
∂

∂t

(
U †|ψ̃〉

)
= H

(
U †|ψ̃〉

)
. (A.5)

Differentiating, left multiplying by U and rearranging the terms gives

ih̄
∂

∂t
|ψ̃〉 =

(

UHU † − ih̄U
∂U †

∂t

)

|ψ̃〉. (A.6)

We identify the term in parenthesis as the new Hamiltonian governing the

transformed state vector. Using one more relation,

∂

∂t

(
UU †

)
= 0 =

∂U

∂t
U † + U

∂U †

∂t
, (A.7)

we can write the transformed Hamiltonian H̃ as

H̃ = UHU † + ih̄
∂U

∂t
U † . (A.8)

A.2 A general one-dimensional coordinate transforma-
tion

By varying the frequency difference ∆ω between the two traveling-wave com-

ponents of our standing wave, the position of the potential can be controlled in

an arbitrary way. If 2kLα(t) is the total accumulated phase difference between

the two components,

α(t) =
1

2kL

∫ t

0
∆ω(τ )dτ (A.9)

then the classical Hamiltonian in the lab frame has the following form:

H(x, p, t) =
p2

2M
+ V0 cos

(
2kL [x − α(t)]

)
. (A.10)

Following the recipe outlined by Peik [37], we apply a unitary transformation

that performs a translation of the position, momentum, and overall energy:

U(t) = eiα(t)p/h̄e−iβ(t)x/h̄eiγ(t)/h̄. (A.11)
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U ’s action on x and p is

U(t)xU †(t) = eiα(t)p/h̄xe−iα(t)p/h̄ (A.12)

= x + α(t) (A.13)

U(t)pU †(t) = e−iβ(t)x/h̄peiβ(t)x/h̄ (A.14)

= p + β(t). (A.15)

This can be verified using the relation

eABe−A = B + [A, B] +
1

2!
[A, [A, B]] +

1

3!
[A, [A, [A, B]]] + . . . (A.16)

and the following commutation relations

[p, f(x)] = −ih̄
∂f

∂x
(A.17)

[x, f(p)] = ih̄
∂f

∂p
. (A.18)

Because the Hamiltonian is a function composed of algebraic operations in-

volving c-numbers, x and p and contains no constant matrices, we see that

UH(x, p, t)U † = H(UxU †, UpU †, UtU †) (A.19)

To obtain the transformed Hamiltonian from Eq. (A.8) we need to compute

the final term. Being careful with the order of noncommuting terms, we find

that

ih̄
∂U(t)

∂t
U †(t) = −α̇p + β̇U(t)xU †(t) − γ̇ (A.20)

= −α̇p + β̇ (x + α) − γ̇. (A.21)

We now use our freedom to choose γ to tidy up the transformation of the

Hamiltonian by absorbing all terms that are only time dependent. Shifting the

overall energy in this way is an operation that does not affect the dynamics.

With γ̇ given by

γ̇ =
β2

2M
+ β̇α, (A.22)
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and using Eq. (A.8), the Hamiltonian of Eq. (A.10) becomes

H(x, p, t) =
p2

2M
+ V0 cos(2kLx) + xβ̇ + p

(
β

M
− α̇

)

(A.23)

Now, we are free to choose β as we like. If we let

β = M α̇, (A.24)

then we are left with

H(x, p, t) =
p2

2M
+ V0 cos(2kLx) + xaM (A.25)

where we identify the acceleration a = α̈. If, on the other hand, we choose

β = 0, then we get

H(x, p, t) =
(p −Mv)2

2M
+ V0 cos(2kLx) (A.26)

where we have identified the instantaneous velocity v = α̇. We note here

that these last two Hamiltonians are analogous to the pair related by a gauge

transformation of the electromagnetic field for the case of an electron.
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A.3 Canonical Transformations

In this section, the equivalent (classical) canonical transformation to the gen-

eral unitary transformation detailed in Section A.1 is shown.

A.3.1 Transformation for a general time dependent phase: from
lab frame to potential frame

By varying the frequency difference ∆ω between the two traveling-wave com-

ponents of our standing wave, the position of the potential can be controlled in

an arbitrary way. If 2kLf(t) is the total accumulated phase difference between

the two components,

f(t) =
1

2kL

∫ t

0
∆ω(τ )dτ (A.27)

then the classical Hamiltonian in the lab frame has the following form:

H(x, p, t) =
p2

2M
+ V0 cos

(
2kL [x + f(t)]

)
. (A.28)

Our new coordinates, x′ and p′, in the time dependent frame are

x′ = x + f(t) (A.29)

p′ = M
dx′

dt
= p + M

df

dt
. (A.30)

Following the recipe detailed by Goldstein [78], we seek a new Hamiltonian,

H ′ that is a function of x′ and p′ and that must satisfy Hamilton’s principle if

x′ and p′ are to be canonical coordinates. For the old coordinates in the lab

frame we had,

δ
∫ t2

t1

(
pẋ − H(p, x, t)

)
dt = 0, (A.31)

and for the new set we have,

δ
∫ t2

t1

(
p′ẋ′ − H ′(p′, x′, t)

)
dt = 0. (A.32)

This condition results in a relation between the integrands,

pẋ −H = p′ẋ′ − H ′ +
dF

dt
, (A.33)
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where F , the generating function, specifies the form of the transformation.

Now, we let

F = F2(x, p′, t) − x′p′. (A.34)

Substituting (A.34) into (A.33) we get after some algebra

pẋ − H = −ṗ′x′ − H ′ +
∂F2

∂t
+

∂F2

∂x
ẋ +

∂F2

∂p′
ṗ′. (A.35)

Since x and p′ are independent their coefficients must each vanish. As a result,

the new Hamiltonian is related to the original one by

H ′ = H +
∂F2

∂t
, (A.36)

and we have the following relations for F2

p =
∂F2

∂x
(A.37)

x′ =
∂F2

∂p′
. (A.38)

After rewriting these two expressions in terms of x and p′, we can determine

F2(x, p′, t) up to some function only of time, g(t), to be determined shortly.

We have then

F2(x, p′, t) = p′x − Mx
df

dt
+ p′f(t) + g(t), (A.39)

and therefore we obtain

∂F2

∂t
= −Mx

d2f

dt2
+ p′

df

dt
+

dg

dt
. (A.40)

Since f and g are functions only of time, the partial derivative with respect

to time is equivalent to a full derivative. Substituting (A.40) into (A.36) and

writing everything in terms of the new coordinates, x′ and p′, we get

H ′(x′, p′, t) =
p′2

2M
+ V0 cos(2kLx′) − Mx′d

2f

dt2
+

dg

dt
+ Mf(t)

d2f

dt2
+

M

2

(df

dt

)2
.

(A.41)
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We choose g(t) so that the last three terms, which depend only on t, vanish.

This leaves us with

H ′(x′, p′, t) =
p′2

2M
+ V0 cos(2kLx′) − Mx′d

2f

dt2
(A.42)

and
dg

dt
= −

[
Mf(t)

d2f

dt2
+

M

2

(df

dt

)2
]
. (A.43)

A.3.2 Example I: An accelerating and modulating phase

The potential used to study Wannier Stark ladders is realized by quadratically

ramping the phase in time while simultaneously modulating it weakly to probe

the ladder states. The potential in the lab frame is of the form

V0 cos

[

2kL

(
x + v0t +

at2

2

)
+ λ sinωpt

]

, (A.44)

where v0 is the velocity, a is the acceleration of the standing-wave, and λ is

the modulation modulation index of the weak probe. The function f(t) of

Equation (A.29) and its derivatives are

f(t) = v0t +
at2

2
+

λ

2kL
sinωpt (A.45)

f ′(t) = v0 + at +
λωp

2kL
cosωpt (A.46)

f ′′(t) = a −
λω2

p

2kL
sinωpt. (A.47)

The Hamiltonian in the potential’s reference frame is

H ′(x′, p′, t) =
p′2

2M
+ V0 cos(2kLx′) − Max′ +

Mλω2
p

2kL
x′ sinωpt. (A.48)

We see then that the acceleration produces an inertial term that acts like a

static, homogeneous electric field, and the phase modulation produces a term

that is equivalent to a dipole coupled to an external AC field.
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